
Managing Personal Software
Installations

Afif Elghraoui

NIH HPC staff

staff@hpc.nih.gov

mailto:staff@hpc.nih.gov

When using code

https://xkcd.com/1742/

http://phdcomics.com/comics.php?f=1689

https://xkcd.com/1742/
http://phdcomics.com/comics.php?f=1689

When writing code

Application support on Biowulf

The HPC Staff will maintain software installations if
• we expect that they’ll be useful to more than one or two people – not

obscure/unpublished/obsolete

• the application can be run without elevated privileges (like requiring write
access to the installation directory).

Installation Methods

• System Package Manager (apt, yum, dnf, …)
• Packages are built with a consistent set of libraries
• Potentially limited selection of packages and package versions.
• Requires root access in most cases (but becomes an option if you’re

using containers!)

• User-level Package Managers (conda, homebrew, nix, guix, …)
• No special permissions needed
• Automatically install almost any version of any package…and maybe

get a bunch of conflicts as a result of the complexity.
• Some are language-specific (pip, gem, cpan, …) and won’t handle

dependencies if they’re implemented in a different language.

• Manual
• “Dependency hell”
• Can be messy and cause interesting problems if you’re not careful. https://xkcd.com/1654

https://xkcd.com/1654

Existing Biowulf guides to user-level package
management and installation
• Conda

Language-independent, but started with Python.

Guide to using conda on Biowulf: https://hpc.nih.gov/apps/python.html#envs

• Personal R package installations
R’s install.packages() can be used as a regular user– it will fall back to
installing in your home directory after it finds out it’s not allowed to write in the
system directory.

Personal R packages on Biowulf: https://hpc.nih.gov/apps/R.html#install

• Guide to personal environment modules:
https://hpc.nih.gov/apps/modules.html#personal

https://hpc.nih.gov/apps/python.html#envs
https://hpc.nih.gov/apps/R.html#install
https://hpc.nih.gov/apps/modules.html#personal

Keeping things organized

https://xkcd.com/1987/

https://xkcd.com/1987/

Filesystem Hierarchy Standard (FHS) and the
installation prefix
• Specifies layout of the system directory tree.

• Executive summary, as pertains to software installation:
Most of these directories are seen in /, /usr/, and /usr/local/
• bin/ – executables
• libexec/ – helper commands (run by commands in bin/, not by users

directly)
• include/ – header files (like for C, C++ libraries)
• lib/ – software libraries
• etc/ – configuration files
• share/ – architecture-independent files

• man/ – manual pages

https://refspecs.linuxfoundation.org/FHS_3.0/fhs/index.html

https://refspecs.linuxfoundation.org/FHS_3.0/fhs/index.html

Review(?) - environment variables

• See them with the env or printenv commands.
• Some are used by the system, like $PATH, and others, like
$http_proxy, are conventions and might be respected or ignored
depending on the program.

$ MYVAR=foo
$ echo $MYVAR
foo
$./printmyvar # if you create this script that just runs ‘echo $MYVAR’
$
$ unset MYVAR
$ echo $MYVAR
$ MYVAR=foo ./printmyvar
foo
$ echo

“dotfiles”

• Personal configurations stored in files/directories beginning with a
dot (making them hidden) in your home directory.
• Some applications started following the XDG base directory specification,

which specifies ~/.config/ as the default directory for such files.

• Aside – ideas for keeping your dotfiles under version control:
https://dotfiles.github.io

• Making persistent customizations to your environment will involve
editing your shell’s resource file– ~/.bashrc in the case of bash,
the default shell.

https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://dotfiles.github.io/

~/.bashrc

• From bash(1), section INVOCATION:

Special Environment Variables for Running
Applications
• PATH

List of directories to look for executables

• LD_LIBRARY_PATH
List of directories to look for shared libraries. Not needed if library paths were built
into the software was built with rpath

• MANPATH
List of directories to look for man pages

• Some language specific variables:
• R_LIBS, R_LIBS_USER
• PYTHONPATH

• PERL5LIB
• …

https://en.wikipedia.org/wiki/Rpath

Special Environment Variables for Building
Applications
• LIBRARY_PATH

search path for libraries to link to

• LD_RUN_PATH

Library paths to hard-code into the resulting binary as rpath. Alternative to setting them via the command-line
flag -Wl,-rpath, as some build systems do. The variable is ignored if the command-line flag is used [citation-
needed].

• CPATH

search path for header files

• CFLAGS CXXFLAGS

C and C++ compiler flags

• CPPFLAGS

C pre-processor flags. (Include paths could be passed here as –I/path/to/include if the build system
honors it, rather than using CPATH).

• LDFLAGS

linker flags. (Library paths could be passed here as –L/path/to/lib if the build system honors it, rather
than using LIBRARY_PATH).

https://gcc.gnu.org/onlinedocs/gcc/Environment-Variables.html

https://gcc.gnu.org/onlinedocs/gcc/Environment-Variables.html

Build Systems - Autotools

• Generally the most straightforward for users to deal with.

• Characterized by the existence of a configure script and a
template Makefile, Makefile.am.

• Environment variables previously mentioned are respected.

• General process
./configure [configure options]

make

make check # if test suite exists

make install

Autotools package example: GNU hello

wget http://ftp.gnu.org/gnu/hello/hello-2.10.tar.gz

tar -xf hello-2.10.tar.gz

cd hello-2.10

mkdir -p /data/$USER/opt/hello

module load gcc # use a modern compiler

./configure --prefix /data/$USER/opt/hello/2.10

make

make check

make install

http://ftp.gnu.org/gnu/hello/hello-2.10.tar.gz

Private modulefile for hello

Create the file ~/modulefiles/hello/2.10.lua with the
following contents:

local basedir = “/data/” .. os.getenv(“USER”) .. “/opt/” .. myModuleFullName()

prepend_path(“PATH”, basedir .. “/bin”)

prepend_path(“MANPATH”, basedir .. “/share/man”)

Using your personal modules

module use ~/modulefiles # can add this line to ~/.bashrc

module load hello

module list # see what’s been loaded

man hello

which hello

hello

Build Systems - Cmake

• Cross-platform Make. It can set up builds for native Windows, too,
unlike the Autotools.

• Characterized by the existence of a CMakeLists.txt file.

• Needs the cmake program installed to be able to configure the build
(Autotools just uses the shell).

• General procedure:
mkdir build && cd build

cmake [config options] ..

make

make test # if test suite exists
make install

Cmake example (with a twist): kallisto

wget https://github.com/pachterlab/kallisto/archive/v0.46.0.tar.gz

tar –xf v0.46.0.tar.gz

cd kallisto-0.46.0

module purge # start fresh following the previous example

mkdir /data/$USER/opt/kallisto # create our separate installation prefix for this
program

module load gcc cmake

mkdir build && cd build

cmake -DCMAKE_INSTALL_PREFIX=/data/$USER/opt/kallisto/0.46.0 ..

https://github.com/pachterlab/kallisto/archive/v0.46.0.tar.gz

Cmake example (with a twist): kallisto

Not so fast

CMake Error at /usr/local/Cmake/3.9.5/share/cmake-
3.9/Modules/FindPackageHandleStandardArgs.cmake:137 (message): Could NOT find HDF5 (missing:
HDF5_LIBRARIES HDF5_INCLUDE_DIRS) Call Stack (most recent call first):
/usr/local/Cmake/3.9.5/share/cmake-3.9/Modules/FindPackageHandleStandardArgs.cmake:377
(_FPHSA_FAILURE_MESSAGE) /usr/local/Cmake/3.9.5/share/cmake-3.9/Modules/FindHDF5.cmake:839
(find_package_handle_standard_args) src/CMakeLists.txt:30 (find_package)

Load hdf5 and try again—

module load hdf5

cmake -DCMAKE_INSTALL_PREFIX=/data/$USER/opt/kallisto/0.46.0 ..

make

Cmake example (with a twist): kallisto

More trouble!

Cmake example (with a twist): kallisto

Lots of gz errors. Googling the errors indicates that the problem is that our zlib is too old.

module load zlib

cd .. && rm –rf build && mkdir build && cd build # start a fresh build

cmake \

-DCMAKE_INSTALL_PREFIX=/data/$USER/opt/kallisto/0.46.0 \

`# $ZLIB_LIBS is defined by the biowulf zlib module. You can see this by running module show zlib` \

-DCMAKE_EXE_LINKER_FLAGS=“$ZLIB_LIBS” \

`# setting rpath on the command line removes LD_RUN_PATH from consideration` \

-DCMAKE_SKIP_RPATH=YES \

..

make

make install

Cmake example (with a twist): kallisto

Create our modulefile (almost identically as before, but there are no
manpages this time) ~/modulefiles/kallisto/0.46.0.lua
with the following contents:

local basedir = “/data/” .. os.getenv(“USER”) .. “/opt/” ..

myModuleFullName()

prepend_path(“PATH”, basedir .. “/bin”)

Cmake example (with a twist): kallisto

Kallisto is already installed centrally on biowulf, but your personal module will be given precedence since it
appears first in the MODULEPATH.

get out of the build directory and unload the build modules

cd; module purge

module avail kallisto # which versions do you see?

module load kallisto

module list # which version was loaded?

which kallisto # where is our installed kallisto?

kallisto –h

Congratulations!

