
Using	the	NIH	HPC	Storage	
Systems	Effectively

Tim	Miller
btmiller@helix.nih.gov
https://hpc.nih.gov

Chacko, Susan (NIH/CIT) [E]
benjamin.miller@nih.gov

Motivation

• Often	get	e-mail	complaining	about	slow	access	to	directories
• File	storage	systems	are	often	over-saturated,	leading	to	system	
problems	that	take	staff	time	to	resolve
• Users’	work	is	often	negatively	impacted	(sometimes	without	their	
knowledge).

Course	overview/outline
• Overview	of	HPC	systems	storage

• Different	areas	(/home,	/data,	/scratch,	object	store)
• Quotas	and	quota	increases

• Understanding	input	and	output	(I/O)
• I/O	patterns	
• Introduction	to	data	and	metadata

• HPC	storage	systems	- under	the	hood	and	beyond	the	basics
• Basics	of	storage	system	architecture	(and	what	they	mean	for	you	as	a	user)
• System	components	– storage	servers	and	disks
• Caches	– local	and	remote

• Putting	it	all	together	– using	storage	effectively
• Profiling	and	benchmarking	your	application’s	I/O	usage
• Understanding	when	you’re	generating	too	much	I/O	on	the	system	

Who	are	you?

• HPC	account?
• Amount	of	storage	used?
• Do	you	develop	your	own	code	or	scripts	to	process	data?
• Particular	problems/issues?

Some	foolish(?)	assumptions

• You	have	basic	working	familiarity	with	the	Linux	command	line
• You	understand	file	and	directory	permissions,	at	least	at	a	basic	level
• You	want	to	understand	the	HPC	storage	systems	a	little	better	so	you	
can	get	your	science	done	more	efficiently.
• You’re	not	interested	in	become	a	storage	system	engineer	or	
administrator	
• i.e.	you	understand	that	some	of	the	material	given	here	is	somewhat	
simplified	for	easier	digestion

Course	overview/outline
• Overview	of	HPC	systems	storage

• Different	areas	(/home,	/data,	/scratch,	/lscratch,	object	store)
• Quotas	and	quota	increases

• Understanding	input	and	output	(I/O)
• I/O	patterns	
• Introduction	to	data	and	metadata

• HPC	storage	systems	- under	the	hood	and	beyond	the	basics
• Basics	of	storage	system	architecture	(and	what	they	mean	for	you	as	a	user)
• System	components	– storage	servers	and	disks
• Caches	– local	and	remote

• Putting	it	all	together	– using	storage	effectively
• Profiling	and	benchmarking	your	application’s	I/O	usage
• Understanding	when	you’re	generating	too	much	I/O	on	the	system	

The	NIH	HPC	filesystems

• /home	is	small	– only	non-buyin filesystem	backed	up	to	tape	– No	shared	areas!
• Snapshots	and	off-site	tape	back-ups

• /data	- in	practice	you	will	keep	most	of	your	working	files	here
• Quota	increases	available	with	justified need
• Shared	data	directories	available	on	request
• Snapshots	available	(less	frequent	than	/home)

• /scratch	– shared	area	for	temporary data
• /lscratch – compute	node	local	scratch;	allocated	with	batch	jobs

What	are	local	and	network	file	systems?

• Network	file	systems	are	accessed	by	sending	data	to	one	or	more	
servers
• The	server	controls	the	disks	that	store	the	data
• Multiple	different	client	computers	can	access	the	filesystems	simultaneously

• Local	file	systems	do	not	send	data	over	the	network
• Disks	usually	directly	attached	to	the	computer	the	accesses	the	file	system
• Only	that	single	computer	accesses	the	disks	directly

General	best	practices

We’ll	be	talking	a	lot	about	the	“whys”	behind	some	of	these	rules!

/lscratch

The	HPC	Object	Store

• “Web	Scale”	storage
• Highly	reliable	(dispersed	over	multiple	sites)
• Easy	to	expand	(just	add	more	disks)
• Accessed	via	simple	list,	put,	get,	delete	semantics	(examples	forthcoming)

• Different	from	file	based	storage	systems
• Objects	are	accessed	by	NAME,	not	PATH
• Completely	flat	name	space
• No	concept	of	directories,	but	“/”	is	a	valid	character	in	object	names
• Data	and	metadata	are	stored	together	with	the	object	(sometimes	true	in	file	
storage	systems	as	well)

• More	info:	https://hpc.nih.gov/storage/object.html
• Unless	otherwise	noted,	the	rest	of	this	class	deals	with	file (not	object)	
storage.

Use	cases	for	object	storage
• Read-intensive	workloads
• Object	storage	is	much	more	efficient	at	reading	than	writing.
• An	entire object	has	to	be	re-written	for	each	change

• Computationally	expensive	to	process	and	disperse	the	data
• Lots	of	over-writing

• Static	data
• Related	to	the	above
• Data	that	doesn’t	change	often,	but	still	used
• E.g.	reference	genomics	files

Understanding	your	disk	quota

• Use	the	checkquota command
• Shows	all	directories	you have	write access	to.
• Mailbox	is	only	shown	on	helix

• You	can	also	get	this	information	from	your	user	dashboard
• Some	storage	systems	have	limits	on	the	number	of	files	– please	
keep	these	in	mind	(more	on	this	later).

Requesting	quota	increases	

• Default	data	directory	quota:	
100	GB
• Quota	increases	must	be	
justified.
• Explain	number	of	files,	size	of	
files,	and	scientific	use.
• Don’t	use	“prior	experience”	or	
“my	lab	mate	said”

• No quota	increases	on	home	
directories

Using	space	efficiently

• Instead	of	running	to	the	quota	request	form,	think	about	whether	
you	can	be	using	space	more	efficiently.
• Move	files	back	to	your	local	computing	infrastructure	when	you’re	done	
processing
• Delete	any	raw	data	or	intermediate	files	that	you’re	sure you	won’t	need	
again	(or	that	are	backed	up	elsewhere)
• Compress		(gzip,	bzip2,	etc.)	files	when	not	in	active	use	(note:	not	all	files	
compress	well).	
• FASTQ	files	should	always be	compressed
• Molecular	dynamics	binary	trajectories	generally	don’t	compress	much

• Storage	space	on	the	NIH	HPC	systems	(including	the	object	store)	is	
NEVER	to	be	used	for	archiving.

Shared	data	directories

• Requested	from	
https://hpc.nih.gov/nih/shared_data_request.html

• A	new	group	will	be	created	(group	name	must	
begin	with	a	capital	letter).
• Group	members	must	be	specified

• Justification	for	the	storage	request	must	be	given	
as	with	a	personal	data	directory	quota	increase.

• Don’t	open	your	personal	data	directory	to	world	
access!
• Shared	group	directories	should	only	be	accessible	by	
the	group	that	owns	them.

• Requestor	becomes	“group	owner”
• The	only	one	who	can	request	a	quota	increase
• The	only	one	who	can	request	users	be	added	to	or	
removed	from	the	group

Shared	data	directories	and	permissions

• New	directories	created	under	the	top	level	will	generally	NOT have	the	
SGID	bit	set.
• Users	can	override	group	ownership	and	permissions	of	directories	that	
they	create	within	the	shared	area.
• Some	applications	do	this	without	informing	the	user.

• Coordination	and	care	among	group	members	is	needed.	

Group	owner	– the	ONLY	user	
allowed	to	request	quota	
increases	for	the	group.

Shared	data	directories	and	permissions

• New	directories	created	under	the	top	level	will	generally	NOT have	the	
SGID	bit	set.
• Users	can	override	group	ownership	and	permissions	of	directories	that	
they	create	within	the	shared	area.
• Some	applications	do	this	without	informing	the	user.

• Coordination	and	care	among	group	members	is	needed.	

Group	name	– same	as	the	
shared	data	directory	name.	

Shared	data	directories	and	permissions

• New	directories	created	under	the	top	level	will	generally	NOT have	the	
SGID	bit	set.
• Users	can	override	group	ownership	and	permissions	of	directories	that	
they	create	within	the	shared	area.
• Some	applications	do	this	without	informing	the	user.

• Coordination	and	care	among	group	members	is	needed.	
• Set	umask to	007	so	that	all	files/directories	created	become	group	writeable
• Some	users	request	that	their	primary	group	be	changed	to	the	shared	group

Permissions	– all	group	members	can	write	at	the	top	level.	The	
SGID	bit	(“s”	in	the	group	execute	permissions)	indicates	all	files	
created	in	this	directory	will	have	a	group	ownership	of	SomeLab.	

A	few	notes	about	/scratch

• /scratch	is	a	network	accessed,	global /scratch	directory
• Prior	to	mid-2015	(before	Biowulf 2),	/scratch	was	a	local disk	file	system	
• The	same	scratch	directory	is	available	on	helix,	biowulf,	and	all	of	the	compute	
nodes.

• Files	deleted	if	not	accessed	for	10	days!
• Good	use-cases	for	/scratch

• A	temporary	means	of	sharing	data	with	a	colleague	who	has	a	HPC	account
• Storing	lightly	accessed	temporary	files	that	must	be	accessed	from	multiple	nodes.

• Bad	use-cases	for	/scratch
• Storing	application	temporary	files	that	are	only	accessed	from	a	single	host	(use	
/lscratch instead).

• Storing	anything	that	must	be	read	and	written	frequently	(use	/data	or	/lscratch
instead).

• Storing	valuable,	hard	to	reproduce	data	(no	back-ups;	use	/home	or	/data	as	
appropriate).

Using	/lscratch

• /lscratch =	local	scratch	space	on	a	compute	node
• Allocated	as	a	generic	resource:
• sbatch …	--gres=lscratch:100	ß allocates	100	GB
• swarm	-f	swarmfile	--gres=lscratch:100	...
• Ibid	for	sinteractive
• At	/lscratch/$SLURM_JOBID

• Benefits
• Local	to	node,	no	network	traffic
• Fewer	users	sharing	it
• New	nodes	have	faster	solid-state	disks

When	to	use	/lscratch (and	when	not)

• Use	/lscratch when…
• Many	jobs	will	be	independently reading	in	the	same	data	file.
• Many	jobs	will	be	independently writing	out	output	files.
• Many	jobs	will	be	writing	out	a	lot	of	independent temporary	files
• Jobs	will	be	doing	large	amounts	of	random	I/O	(more	on	this	later)
• Swarms	that	read/write	a	lot	of	I/O	should	almost	always	use	lscratch!!!

• Don’t	use	/lscratch	(or	why	bother)	when...
• Your	job	needs	to	write	out	a	file	visible	to	multiple	nodes	(this	is	rare?)
• Your	job	is	only	reading/writing	a	few	files	and	not	very	much	data.

• If	in	doubt,	e-mail	staff@hpc.nih.gov

Workflow	for	/lscratch

• Copy	high-intensity	input	data	from	network	directory	to	lscratch
• Don’t	have	50	independent	processes	all	reading	the	same	input
• Copy	the	input	into	each	process’s	lscratch directory
• Multiple	copies	per	host?	Can	avoid	this	with	clever	scripting…
• Remember	to	copy	results	back	when	done	– lscratch	goes	away	after	your	
job	finishes!

• Use	lscratch	for	temporary	files/scratch	space
• Set	environment	variables	– e.g.	$TMPDIR,	$SCRATCH
• Scratch/temp	space	variables	are	often	program	specific	– need	to	know	your	
application

• Use	lscratch	as	a	local	cache	for	objects	from	the	object	store.

A	rough	guide	to	choosing	a	storage	system
• /home

• Small	files	that	are	very	important,	low	I/O	intensity
• Not	for	files	that	need	to	be	shared	with	other	users

• /data
• Bulk	data	files	and	scripts
• Consider	using	shared	data	areas	for	sharing
• Shared,	parallel	filesystems	– intensive,	single	node	I/O	->	
/lscratch.

• /scratch
• Low	I/O	intensity job	data	that	needs	to	be	accessed	from	
multiple	nodes.

• Good	for	short-term	sharing.
• /lscratch

• High	I/O	intensity job	data	that	only	needs	to	be	accessed	
from	a	single	node.

• Object
• Primarily	read-only	data;	low	to	medium	intensity,	but	large	
capacity.

Course	overview/outline
• Overview	of	HPC	systems	storage

• Different	areas	(/home,	/data,	/scratch,	object	store)
• Quotas	and	quota	increases

• Understanding	input	and	output	(I/O)
• I/O	patterns	
• Introduction	to	data	and	metadata

• HPC	storage	systems	- under	the	hood	and	beyond	the	basics
• Basics	of	storage	system	architecture	(and	what	they	mean	for	you	as	a	user)
• System	components	– storage	servers	and	disks
• Caches	– local	and	remote

• Putting	it	all	together	– using	storage	effectively
• Profiling	and	benchmarking	your	application’s	I/O	usage
• Understanding	when	you’re	generating	too	much	I/O	on	the	system	

What	is	a	filesystem?

• A	filesystem	mediates	between	a	physical	
storage	device	(e.g.	a	hard	disk	or	a	thumb	
drive)	and	a	more	user-friendly	view	of	files	
and	directories.
• Can	span	a	single	computer	or	a	network	of	
computers
• Some	popular	(?)	filesystems:
• Windows:	NTFS,	FAT
• Mac/iOS:	HFS+,	APFS
• Linux:	ext4,	XFS
• Parallel	computing/HPC:	NFS,	GPFS,	Lustre

A	block	about	blocks

• A	filesystem	organizes	files	and	directories	into	blocks	of	data
• This	is	because	hard	disks	can	only	read	and	write		information	in	discrete-sized	chunks.

• Each	non-zero	length	file	you	store	takes	up	at	least	one	full	block	on	the	
filesystem.
• The	exact	size	of	a	block	differs	from	filesystem	to	filesystem	and	may	be	chosen	by	the	
administrator	who	creates	the	filesystem.

Sequential	vs.	random	access
• Sequential	access:	blocks	in	a	
file	are	read	one	after	the	other
• Example:	reading	in	a	series	of	
sequences	from	a	file,	one	after	
another.
• Sometimes	referred	to	as	
“streaming”.
• Special	cases,	e.g.	reading	a	file	
backwards.

• Random	access:	blocks	in	the	
file	are	read	in	a	random	order.
• Common	in	database	applications
• Much	harder	for	I/O	systems	to	
optimize

Exercise	1:	sequential	vs.	random?

• Are	the	following	procedures	likely	to	have	primarily	a	sequential	I/O	
pattern,	or	a	random	one?
• Reading	a	fastq file	into	memory?
• Extracting	random	sequences	from	a	BAM	file?
• Searching	through	a	BAM	file	to	find	all	sequences	matching	a	given	pattern?
• Getting	colors	of	non-contiguous	pixels	from	a	PNG	file?
• Traversing	a	file	whose	contents	are	organized	as	a	binary	tree?

Exercise	2:	Your	own	application

• What	kinds	of	applications	do	you run	on	Biowulf?
• Genomics?
• Simulation/molecular	dynamics?
• Informatics?

• What	kind	of	workload	does	it	produce?
• Reading	lots	of	data	into	memory	(sequential)?
• Un-ordered	search	through	many	sequence	files	(random)?
• Writing	out	checkpoints	or	trajectories	for	simulation	(sequential)?
• Other/unknown?

Why	is	random	I/O	so	much	slower?

• Until	very	recently	all	hard	disks	were	so-called	
rotational	media
• Data	is	stored	on	one	or	more	magnetic	platters
• Data	is	read	and	written	by	heads	with	small	
magnets.

• The	speed	at	which	the	platters	and	heads	could	
move	gives	a	hard	upper	limit	on	performance
• 7200	RPM	drive	~	0.4	millisecond	average	latency
• Compare	to	nanosecond	latency	between	CPU	ops.

• HPC	systems	use	many	hard	drives	working	in	
tandem,	but	the	same	basic	physics	hold.
• Note:	this	is	an	oversimplification,	but	a	useful	
one	to	keep	in	mind.

Why	is	random	I/O	so	much	slower?

• Now	we	have	solid	state	disks	(SSDs)
• Instead	of	magnetic	platters,	data	is	stored	on	
nonvolatile	memory	chips.

• No	more	having	to	wait	for	the	platters	to	physically	
rotate.

• Random	I/O	is	much,	much	better
• Not	a	panacea

• Still	have	to	consider	reading/writing	multiple	chips.
• Semantics	of	updating	flash	chips	can	cause	
performance	degradation.

• More	expensive	per	GB.
• The	HPC	storage	systems	put	some	metadata
and	some	performance	critical	data	on	SSDs,	but	
most	data	is	kept	on	rotational	hard	drives!

I/O	comes	in	all	sizes

• In	addition	to	the	pattern of	I/O,	we	also	have	to	be	concerned	with	
the	size	of	I/O.
• Which	do	you	think	will	be	faster?
• An	application	that	reads	100	MB	sequentially	by	issuing	50	read	requests	of	2	
MB	each
• An	application	that	reads	100	MB	sequentially	by	issuing	5000	read	requests	
of	20	KB	each

I/O	comes	in	all	sizes

• In	addition	to	the	pattern of	I/O,	we	also	have	to	be	concerned	with	
the	size	of	I/O.
• Which	do	you	think	will	be	faster?
• An	application	that	reads	100	MB	sequentially	by	issuing	50	read	requests	of	2	
MB	each
• An	application	that	reads	100	MB	sequentially	by	issuing	5000	read	requests	
of	20	KB	each

• The	first	case	is	(usually)	a	lot	faster
• There’s	a	certain	amount	of	overhead	in	performing	requests.
• Some	systems	will	try	to	coalesce	multiple	small	requests	into	bigger	ones
• With	random	I/O,	this	can	be	difficult	to	impossible.

I/O	comes	in	all	sizes

• In	addition	to	the	pattern of	I/O,	we	also	have	to	be	concerned	with	
the	size	of	I/O.
• Which	do	you	think	will	be	faster?
• An	application	that	reads	100	MB	sequentially	by	issuing	50	read	requests	of	2	
MB	each
• An	application	that	reads	100	MB	sequentially	by	issuing	5000	read	requests	
of	20	KB	each

• The	first	case	is	(usually)	a	lot	faster
• There’s	a	certain	amount	of	overhead	in	performing	requests.
• Some	systems	will	try	to	coalesce	multiple	small	requests	into	bigger	ones
• With	random	I/O,	this	can	be	difficult	to	impossible.

Unless	you	are	writing	your	own	application,	
you	don’t	have	any	direct	control	over	this.	
However,	it’s	something	to	be	aware	of!

Data	vs.	metadata

• When	we	think	of	a	file,	we	usually	
think	in	terms	of	the	data it	contains.
• A	BAM	file	contains	sequence	alignments
• A	molecular	dynamics	trajectory	
contains	atomic	coordinates/velocities
• An	MRI	output	contains	an	image	of	
someone’s	brain.
• An	EM	image	contains	a	picture	of	a	cell	
in	the	body.

• Metadata literally	means	“data	about	
data”

Data	vs.	metadata

• Examples	of	metadata
• When	the	file	was	created/accessed
• The	sample	ID	from	which	the	file	was	
generated
• The	access	permissions	of	the	file
• Where	the	data	is	located	physically	on	
the	underlying	disk
• Can	you	think	of	more	examples?

A	conceptual	diagram

• Remember	our	simple	schematic…

A	conceptual	diagram

• Remember	our	simple	schematic…

This	is	the	DATA	
in	the	file.

A	conceptual	diagram

• Remember	our	simple	schematic…

This	is	the	DATA	
in	the	file.

This	is	(some	of)	
the	METADATA

Purposes	of	metadata

How	storage	systems	store	metadata

• Most	filesystems	have	the	concept	of	an	“i-node”
• Special	disk	block	on	the	filesystem	that	holds	information	about	a	file.
• Limited,	pre-defined	metadata	space
• Has	pointers	to	the	blocks	on	a	disk	that	hold	the	data
• Many	recent	filesystems	allow	user-modifiable,	arbitrary	metadata	via	
setfattr/getfattr (but	it’s	usually	not	enabled)

• Some	filesystems	optimize	performance	of	i-nodes
• i-nodes	can	be	arranged	in	clusters	so	that	rotational	media	can	access	them	
more	quickly	(Berkeley	Fast	File	system)
• i-nodes	are	cached	in	nonvolatile	RAM	(think	of	a	small,	very	fast	SSD)
• i-nodes	are	stored	on	SSDs	(even	if	the	data	blocks	are	on	rotational	media)

Looking	at	some	metadata	with	stat

Some	notes	on	directories

• Directories	are	special	files	that	hold	pointers	(links)	to	other	files.
• The	more	files	there	are	in	a	directory,	the	larger	amount	of	space	the	
directory	blocks	will	take	up	on	disk
• Listing	directories,	resolving	path	names,	moving	files,	etc.	all	require	
operations	on	the	directory	blocks.
• The	file	system	has	to	iterate	through	files	in	the	directory	individually
• The	bigger	the	directory	is,	the	longer	these	operations	will	take.
• This	is	why	the	HPC	staff	recommends	having	<	5000	files	per	directory
• Especially	true	with	directories	that	will	have	lots	of	operations	happening	
simultaneously!

File	and	directory	parallel	access

• Reading	and	writing	the	same	file	from	multiple	
parallel	jobs	can	cause	contention.
• Especially	with	writing	– due	to	the	need	for	locks	to	
avoid	corruption	

• Likewise,	lots	of	different	processes	listing,	
creating	files,	etc.	in	the	same	directory	is	a	
bottleneck.
• Constant	creation	and	deletion	of	files	can	create	
performance	issues,	particularly	when	multiple	
processes	are	doing	it	in	the	same	directory.

Exercise	3:	Good	practice	or	bad	practice?

• Which	of	the	following	are	not	good	practice?	Why?
• Having	1,000,000	data	files	in	a	single	directory.
• Having	separate	runs	of	a	program	write	output	to	separate	files.
• Reading	a	data	file	in	once	at	program	initiation,	and	then	keeping	the	data	
cached	in	memory.
• Using	the	name	of	a	file	to	encode	program	results.
• Having	a	swarm	of	1,000	jobs	each	use	the	same	temporary	directory	in	
/scratch.	

A	few	final	notes	on	metadata

• Every user	on	a	given	filesystem	
accesses	the	same	pool	of	
metadata.
• Metadata	heavy	workloads	thus	
radically	slow	down	filesystems	for	
everyone!
• So	avoid:
• Lots	of	file	creation
• Large	number	of	directory	listings.

• Less	true	on	object	store…

Course	overview/outline
• Overview	of	HPC	systems	storage

• Different	areas	(/home,	/data,	/scratch,	object	store)
• Quotas	and	quota	increases

• Understanding	input	and	output	(I/O)
• I/O	patterns	
• Introduction	to	data	and	metadata

• HPC	storage	systems	- under	the	hood	and	beyond	the	basics
• Basics	of	storage	system	architecture	(and	what	they	mean	for	you	as	a	user)
• System	components	– storage	servers	and	disks
• Caches	– local	and	remote

• Putting	it	all	together	– using	storage	effectively
• Profiling	and	benchmarking	your	application’s	I/O	usage
• Understanding	when	you’re	generating	too	much	I/O	on	the	system	

Basic	storage	system	architecture

• /home,	/scratch,	and	some	/data	
directories	are	on	a	large	storage	
system	that	uses	NFS.

Basic	storage	system	architecture

• Other	data	directories	are	on	systems	
running	IBM’s	General	Parallel	File	System	
(GPFS)

NFS	and	GPFS

• NFS	and	GPFS	have	different	back-end	implementations,	but	from	a	user’s	
perspective,	they	work	the	same	way.
• The	systems	perform	similarly,	though	file	system	performance	is	variable	
dependent	on	how	many	users	are	accessing	a	given	filesystem	at	any	one	
time.
• There	is	no significant	performance	advantage	to	using	one	system	vs.	the	other.

• Main	difference	from	a	feature	perspective:	GPFS	has	access	control	lists	
(ACLs)	whereas	the	NFS	implementation	we	use	does	not.
• ACLs	are	an	advanced	way	of	setting	granular	file/directory	permissions	– see	
https://hpc.nih.gov/storage/acls.html for	more	details

• We	will	not	discuss	ACLs	further	in	this	class	(unless	someone	really wants	to).

Figuring	out	where	your	data	is	stored

• You	can	use	the	“-a”	flag	on	checkquota to	see	what	filesystems	the	
directories	you	have	access	to	are	on.
• spin1	=	NFS,	/gs[2-6]	=	GPFS
• NEVER refer	to	any	data	directory	by	its	absolute	path	(i.e.	use	
/data/username	NOT /spin1/users/username
• The	storage	admins	move	directories	for	a	variety	of	reasons,	so	the	absolute	paths	
can	and	do	change.

Storage	system	architecture	schematic

Storage	system	architecture	schematic

Note: this	is	intended	to	
be	a	generic	diagram,	
applicable	to	both	NFS	
(NetApp)	and	GPFS	
storage.

Implementation	details	
vary	from	system	to	
system.

Storage	system	architecture	schematic

Note: this	is	intended	to	
be	a	generic	diagram,	
applicable	to	both	NFS	
(NetApp)	and	GPFS	
storage.

Implementation	details	
vary	from	system	to	
system.

Toss	this	diagram	out	the	window
when	thinking	about	the	object	

store!

Consequences	of	the	storage	architecture

• Highly	parallel	system
• Multiple	storage	controllers
• Many	operations	will	be	routed	through	
a	single	controller,	though!

• Redundant	access	to	underlying	disks
• Designed	for	many	users	to	access	
simultaneously

• Many	places	for	bottlenecks!
• “Front	end”	network	from	the	node	to	
the	controller

• CPU,	memory,	I/O	on	the	controller
• “Back	end”	network	from	the	controller	
to	the	disk.

• On	the	disks	themselves.

One	key	point	to	remember…

• In	general,	the	network	has	far more	bandwidth	than	the	back-end	
disk	media.
• This	is	just	a	function	of	the	speed	of	rotational	disks!
• Just	because	a	node	has	a	10	Gbps network	connection,	don’t	assume	you’ll	
get	that	speed	to	the	storage!
• Obviously	not	true	for	the	oldest	nodes	with	only	gigabit	Ethernet.

>

What	you	can	do	to	avoid	bottlenecks!

• Use	/lscratch whenever	possible!!!
• Since	lscratch is	local	to	the	node	– avoid	all	network	operations
• Also,	lscratch on	newer	nodes	is	provisioned	with	SSDs!

• Avoid	many	parallel	I/O	operations.
• They	tend	to	oversaturate	the	disks

• Try	to	do	I/O	on	large	chunks
• i.e.	read	and	write	large	amounts	of	data
• Less	network	overhead,	and	easier	for	the	disk	systems	to	optimize
• If	you’re	using	someone	else’s	code,	this	is	difficult/impossible

• Avoid	excessive	metadata	operations
• Tend	to	be	filtered	to	a	small	amount	of	disks/controllers.
• This	includes	directory	operations!

Exercise	4	– where	is	the	bottleneck?

• For	the	”bad	practices”	we	identified	earlier	(marked	in	red),	what	
bottlenecks	are	likely	to	be	relevant?
• Having	1,000,000	data	files	in	a	single	directory.
• Having	separate	runs	of	a	program	write	output	to	separate	files.
• Reading	a	data	file	in	once	at	program	initiation,	and	then	keeping	the	data	
cached	in	memory.
• Using	the	name	of	a	file	to	encode	program	results.
• Having	a	swarm	of	1,000	jobs	each	use	the	same	temporary	directory	in	
/scratch.	

Interlude:	A	30,000	foot	look	at	RAID

• Most	people	are	familiar	with	storing	data	on	a	single	hard	drive.
• But	there	are	some	problems…
• Hard	drives	(particularly	mechanical	ones)	are	likely	to	fail
• They	also	have	limited	performance

• Many	years	ago,	some	very	smart	people	invented	RAID	(Redundant	
Array	of	Inexpensive	Disks)	to	solve	these	problems.
• You	as	a	user	don’t	need	to	understand	anything	about	how	it	works	–
I	am	just	mentioning	the	term	since	it’s	useful	for	later.

Different	RAID	levels
• Again	– not	necessary	to	
understand	these	– for	flavor
• Other	levels	(6,	10)	relevant	in	
many	use-cases
• Allows	combining	many	disks	to	
create	a	much	larger	storage	
device

A	deeper	dive	into	storage	components

• Storage	controller
• Specialized	piece	of	hardware	that	routes	requests	between	clients	and	the	
back-end	disk	system.
• Has	to	understand	two	kinds	of	languages

• The	language	of	users:	files,	directories,	abstract	reads	and	writes
• The	language	of	hardware:	disks,	RAID/stripe	groups,	reading/writing	individual	blocks
• Often		includes	special	chips	to	speed	up	parity	calculations	needed	for	writes.

• Often	a	bottleneck	if	many	users	hit	a	particular	storage	system

• Disk	system
• Back	end	that	takes	orders	from	the	storage	controller
• Focuses	on	holding	many	individual	hard	drives	in	a	compact	amount	of	space

A	look	at	a	storage	controller

• Contains	fast	network	and	disk	connections
• Also	a	significant	amount	of	CPU	and	memory	
power.
• CPU	is	used	to	process	storage	requests.
• Memory	is	used	for	caching various	data	and	
metadata.

• Also	contains	application	specific	chips	used	for	RAID	
parity	calculations

• Exact	nature	of	these	controllers	depends	heavily	
on	the	design	of	the	storage	system.
• Some	systems	integrate	the	controllers	with	the	
disks	– others	(including	the	ones	used	on	the	
HPC	systems)	separate	them.
• Both	approaches	are	valid.

A	look	at	a	disk	shelf

• Contains	one	or	more	I/O	modules	that	provide	
access	to	individual	disks.
• Usually	all	components	for	disk	access	are	
redundant.
• Mostly	just	provides	a	convenient	(and	plug-n-
play)	mechanism	for	packaging	disks.
• Some	systems	have	controller	logic	built-into	
the	disk	shelves.

Caches

• Definition:	a	cache	is	a	region	of	higher-
performance	storage	that	sits	in	front	of	lower-
performing,	but	larger	storage.	
• Example:	a	small	pool	of	SSDs	sitting	in	front	of	a	
large	rotational	storage	system.

• Often	implemented	in	the	memory	of	a	
computer	system.
• Caches	exist	in	many	different	places	in	the	
storage	system	– so	it’s	helpful	to	understand	
how	they	behave.

Different	kinds	of	caches

• Read
• Data	that	is	read	is	kept	in	the	cache,	in	case	it	needs	to	be	read	again
• Variation:	read-ahead	– system	tries	to	predict	future	reads	and	put	them	into	
cache	before	they	are	actually	requested

• Write-back
• Data	that	is	written	is	kept	in	the	cache.	The	write	is	acknowledged	as	soon	as	
the	data	is	secure	in	the	cache.
• The	system	tries	to	write	the	data	back	to	the	underlying	storage	at	some	
convenient	time.

• Write-through
• Data	that	is	written	is	kept	in	the	cache.	However,	the	write	is	not	
acknowledged	until	the	data	is	secure	on	the	underlying	(slow)	storage.

A	look	at	node-level	caching

• The	Linux	kernel	likes	to	cache	data	in	memory
• Any	memory	not	being	used	by	an	application	tends	to	get	used	for	cache.
• However,	if	the	system	is	under	memory	pressure,	the	caches	will	get	dropped	and	
I/O	performance	may	suffer.

• GPFS	does	not	use	the	Linux	kernel’s	cache
• Uses	a	(potentially)	smaller	area	(~	2	GB)	called	the	page	pool
• Unlike	the	kernel	cache,	the	page	pool	is	dedicated	(but	lots	of	I/O	will	exhaust	it).

On	this	node,	47	
GB	is	cached.

Where	caches	live	in	the	storage	hierarchy

• At	all	levels!	(almost)
• Nodes,	storage	controllers,	disks
• But	NOT	in	the	network

• Node	level	caches	are	(arguably)	the	most	useful
• Network	storage	is	often	a	bottleneck

• Controller-level	caches	also	very	important
• Prevents	the	controller	from	having	to	go	back	to	the	
disks
• Leads	to	faster	acknowledgements	of	I/O	operations

One	pit-fall	with	caches

• Data	consistency
• If	nodes	cn0001	and	cn0002	both	have		
a	copy	of	some	data	in	cache,	how	are	
these	kept	in	sync?
• Problem	also	exists	with	metadata	(and	
can	be	a	lot	worse	– permissions	
changes	not	instantaneous!)

• Different	storage	systems	solve	this	
in	different	ways
• But	usually	if	lots	of	nodes	“hit”	the	
same	data,	there’s	overhead	to	keep	
things	in	sync!

Points	to	remember	regarding	caches

• You	don’t	have	any	control	over	which	data	gets	cached	and	which	
doesn’t.
• But	if	you’re	doing	lots	of	operations	on	a	small	amount	of	data,	
there’s	a	good	chance	that	it	will	wind	up	in	cache	somewhere.
• Caches	have	potential	pit-falls,	especially	in	regards	to	seeing	a	
consistent	view	of	data	between	nodes.
• Linux	is	very	good	at	handling	this
• However,	don’t	expect	content	written	on	one	node	to	be	immediately	visible	
from	another
• Having	multiple	processes	write	to	the	same	file	is	always a	bad	idea	(without	
some	sophisticated	coding	or	using	locking	[way	beyond	the	scope	of	this	
class]).

Course	overview/outline
• Overview	of	HPC	systems	storage

• Different	areas	(/home,	/data,	/scratch,	object	store)
• Quotas	and	quota	increases

• Understanding	input	and	output	(I/O)
• I/O	patterns	
• Introduction	to	data	and	metadata

• HPC	storage	systems	- under	the	hood	and	beyond	the	basics
• Basics	of	storage	system	architecture	(and	what	they	mean	for	you	as	a	user)
• System	components	– storage	servers	and	disks
• Caches	– local	and	remote

• Putting	it	all	together	– using	storage	effectively
• Profiling	and	benchmarking	your	application’s	I/O	usage
• Understanding	when	you’re	generating	too	much	I/O	on	the	system	

How	do	you	know	if	you’re	abusing	the	
storage	systems?
• This	can	be	difficult	to	know,	but	there	are	a	few	clues
• Very	slow	access	to	working	directories	involved	with	the	job.	(ls	etc.	take	a	
long	time	to	return)
• For	swarms,	job	completion	speed	was	acceptable	for	small	numbers	of	jobs,	
but	gets	dramatically	slower	as	the	size	or	number	of	jobs	increases.
• You	did test	with	small-scale	jobs	first,	right?!

• The	problem	may be	with	another	user’s	jobs,	but	if	you	started	seeing	
problems	right	after	you	started	a	bunch	of	jobs,	you are	the	prime	suspect.

• HPC	staff	will	notify	you	if	we	notice	your	jobs	having	an	impact
• However,	please	be	proactive	and	don’t	wait	for	us	to	notice	the	problem
• If	we	send	you	mail,	it	means	you’re	having	a	significant negative	impact	on	
system	performance.

Refactoring	a	workload	– general	principles

• Look	for	places	where	lots	of	parallel	processes	are	doing	I/O
• Think	about	if	only	one	process	could	do	I/O	and	communicate	with	other	
processes	(probably	not	possible	with	swarm).
• Can	some	or	all	of	that	I/O	use	/lscratch instead	of	/scratch	or	/data?

• Think	about	bottlenecks	in	the	workflow
• E.g.	the	whole	workload	has	to	wait	until	one	file	is	updated
• Does	the	usage	on	a	shared	filesystem	cause	delays	in	this	process?

• Does	the	workflow	behavior	change	over	time?
• Do	jobs	have	different	I/O	patterns	in	the	beginning,	middle,	or	end	of	their	
runs.
• Would	staggering	this	I/O	be	possible?

Workload	refactoring:	an	example
• Start	of	a	real-world	genomics	pipeline

• Aligns	sequences,	creates	index
• RSeQC performs	QC	steps	before	continuing	the	pipeline

• Pipeline	ran	much	more	quickly	after	workload	was	refactored	to	use	I/O	more	
efficiently!

Original	Pipeline

• What	is	wrong	with	this	
picture?

Original	Pipeline

• Lots	of	read	and	writes	back	
to	network	storage.
• Many	parallel	processes	
reading	the	same	data	from	
the	storage	system.
• Depending	on	the	exact	
analysis	done	by	RSeQC,	
random	I/O	is	heavy.
• Remember,	lots	of	RSeQC
processes	in	parallel.

• How	would	you	fix	this?

Refactored	pipeline

• Only	writes	to	networked	
storage	when	needed.
• E.g.	not	after	the	initial	read,	
only	when	index	is	built.

• Instead	of	each	RSeQC
reading	the	data	from	
network	storage,	use	local	
scratch
• Only	write	out	final	result	
files.

IOPS	comparison

• Bottom	line	1:	User	was	able	to	do	more	science	in	less	time.
• Bottom	line	2:	HPC	storage	admins	did	not	have	to	troubleshoot	
performance	problems.

Do	you	need	to	benchmark	I/O	usage?
• In	most	cases	probably	not
• …unless	your	code	is	running	more	
slowly	than	you	like	(or	the	staff	
have	informed	you	of	a	problem)

• ...and	you	think	I/O	might	be	a	
factor	in	that	slowness

• ...and	you’ve	already	tried	
refactoring	your	workload	to	avoid	
bottlenecks.

• In	this	case	it	is	STRONGLY	
RECOMMENDED that	you	discuss	
a	benchmarking	plan	of	action	
with	the	HPC	staff!

Benchmarking	I/O	usage	– the	naïve	way

• Note	– Naïve	does	not	mean	ineffective!
• Sum	up	all	files	read	and	written	by	the	application,	e.g.:

• Read	20	x	50	GB	input	files	(1	TB	total)
• Write	1	x	100	GB	output	file	(100	GB	total)
• Write	and	read	200	x	10	GB	temp.	files	(2	TB	x	2	=	4	TB	total)
• Total	I/O	requirement	– 5.1	TB

• Divide	by	the	run-time	of	your	application	to	see	
throughput	per	second
• If	the	job	ran	for	5	hours	(18,000	seconds)	the	average	I/O	will	be	
~	283	MB/sec.	

• For	swarms,	remember	to	multiply	by	the	number	of	sub-
jobs	in	the	swarm!

Exercise	5:	try	estimating	I/O	on	your	own

• Use	the	HPC	user	dashboard	(https://hpc.nih.gov/dashboard.html)	to	
find	a	recent	job	that	you	ran.
• If	you	don’t	have	a	recent	job,	I	can	assign	you	one	from	one	of	the	Biowulf
class	examples.

• Use	standard	*nix	utilities	(ls,	du)	to	figure	out	how	much	I/O	the	job	
had	generated.
• Note,	you	might	need	to	know	something	about	how	the	application	works	to	
understand	how	it	uses	temporary	files.
• The	point	here	is	not	to	be	totally	accurate	– it’s	to	get	a	general	feel	for	the	
quantity	of	I/O.

• Divide	by	the	job’s	runtime	to	get	average	I/O	usage.
• Think	about	some	potential	problems	with	this	naïve	estimation	
method.

Potential	pitfalls	with	this	approach

• Estimating	can	be	extremely	difficult,	especially	with	temporary	files
• Hard	to	tell	exactly	how	many	temporary	files	are	generated
• Temporary	files	might	get	read	(and	re-written)	multiple	times!

• I/O	usage	is	not	(usually)	consistent	throughout	the	life-time	of	a	job
• Many	jobs	are	heavy	on	I/O	during	start-up	and	shut-down	phases
• Temporary	file	usage	might	also	not	be	continuous	throughout	the	job	

• Need	to	know	something	(or	a	lot)	about	how	your	application	
behaves	in	order	to	get	the	full	picture.

Approach	2:	Profiling	I/O

• Only	for	very	advanced	users	and	developers
• May	require	knowledge	of	how	to	compile	code.
• Interpreting	results	can	be	challenging

• TAU	performance	profiler:	
http://www.cs.uoregon.edu/research/tau/home.php
• Can	use	library	interposition	(intercepting	I/O	calls)
• Can	also	recompile	code	to	get	more	detailed	results

• PAPI:	http://icl.utk.edu/papi/
• Requires	specially	written	code
• Not	installed	on	the	HPC	systems,	but	possibly could	be.
• Better	suited	for	testing	on	local	development	workstations

Approach	2a:	A	much	easier	(but	much	more	
limited)	profiling	approach
• “pidstat”	command	in	Linux	will	show	you	the	I/O	to	local	disk	generated	
by	your	application
• Local	disk	does	not	include	GPFS	or	NFS	filesystems
• Only	useful	for	profiling	lscratch use	(which	is	usually	not	a	bottleneck)
• Use	an	interactive	node	with	screen	or	running	in	the	background	to	collect	the	
instrumentation	yourself

• Example:

cn0123$ pidstat –d 10 120

Prints	out	KB/sec	read	and	written	every	10	seconds	for	2	minutes.

TAU	example

• “fastbayes”	example	from	the	Biowulf class.
• Let’s	see	how	much	I/O	it	generates!	
• Have	to	call	with	tau_exec (load	the	“tau”	module)
• Will	produce	a	file	- profile.0.0.0	(more	files	for	parallel	programs)

Measure	I/O This	is	a	serial
(non-parallel)	
program

Output	from	tau	example
• Process	profile	files	with	pprof (output	mildly	redacted)	

Number	of	
times	invoked	
and	execution	
time	of	I/O	
calls.

Breakdown	of	
bandwidth,	
amount	of	
data	read	or	
written	per	
file	and	I/O	
call.

Final	Notes	on	TAU

• Sampling	profiler
• Uses	its	own	library	routines	to	intercept	and	instrument	I/O	calls
• Induces	some	overhead.
• Does	not	sample	every call;	need	to	make	sure	you	have	enough	samples	for	
meaningful	statistics.

• Can	do	much more	than	sampling	I/O
• But	it’s	mostly	of	interest	to	software	developers

• https://hpc.nih.gov/apps/tau.html

Approach	3:	Collecting	kernel	level	statistics

• HPC	staff	is	developing	tools	that	can	intercept	I/O	calls	(reads,	writes,	
etc.)	automatically	without	user	intervention.
• Has	some	overhead	– more	depending	on	how	many	calls	are	being	made
• We	are	thinking	about	the	best	way	to	deploy	this.
• This	is	done	in	the	kernel (which	is	the	core	of	the	Linux	operating	system).

• Can	provide	more	detailed	information	than	user-space	profilers
• Aggregation	of	statistics	over	multiple,	unrelated	processes.
• Gathering	information	on	sequential	vs.	random	I/O.
• Gathering	information	on	the	sizes	and	latencies	of	requests.

• If	you	have	a	very	difficult	issue	with	your	job’s	I/O,	contact	
staff@hpc.nih.gov - we	can	consider	this	approach.

staff@hpc.nih.gov

Wrap-up;	Q&A

• Thank	you	for	coming!
• We	hope	you	are	able	to	apply	the	lessons	learned	to	your	own	particular	
storage	issues.
• PLEASE	reach	out	to	staff@hpc.nih.gov for	assistance;	we’d	love	to	work	with	
you	proactively instead	of	reactively.

• Any	further	questions?	Discussion	of	particular	problems?
• Please	provide	feedback	on	this	course!
• E-mail	Tim	btmiller@helix.nih.gov
• E-mail	Mark	patkus@helix.nih.gov
• General	questions	staff@hpc.nih.gov

