
Using	the	NIH	HPC	Storage	
Systems	Effectively

Tim	Miller	and	Mark	Patkus
btmiller@helix.nih.gov patkus@helix.nih.gov

https://hpc.nih.gov

Motivation

• Often	get	e-mail	complaining	about	slow	access	to	directories
• File	storage	systems	are	often	over-saturated,	leading	to	system	
problems	that	take	staff	time	to	resolve
• Users’	work	is	often	negatively	impacted	(sometimes	without	their	
knowledge).

Course	overview/outline
• Overview	of	HPC	systems	storage
• Different	areas	(/home,	/data,	/scratch,	object	store)
• Quotas	and	quota	increases
• Snapshots

• Understanding	input	and	output	(I/O)
• I/O	patterns	
• Introduction	to	data	and	metadata
• A	brief	look	at	HPC	storage	systems

• Putting	it	all	together	– using	storage	effectively
• Profiling	and	benchmarking	your	application’s	I/O	usage
• Understanding	when	you’re	generating	too	much	I/O	on	the	system	

Course	overview/outline
• Overview	of	HPC	systems	storage
• Different	areas	(/home,	/data,	/scratch,	object	store)
• Quotas	and	quota	increases
• Snapshots

• Understanding	input	and	output	(I/O)
• I/O	patterns	
• Introduction	to	data	and	metadata
• A	brief	look	at	HPC	storage	systems

• Putting	it	all	together	– using	storage	effectively
• Profiling	and	benchmarking	your	application’s	I/O	usage
• Understanding	when	you’re	generating	too	much	I/O	on	the	system	

The	NIH	HPC	filesystems

• /home	is	small	– only	non-buyin filesystem	backed	up	to	tape	– No	shared	areas!
• Snapshots	and	off-site	tape	back-ups

• /data	- in	practice	you	will	keep	most	of	your	working	files	here
• Quota	increases	available	with	justified need
• Shared	data	directories	available	on	request
• Snapshots	available	(less	frequent	than	/home)

• /scratch	– shared	area	for	temporary data
• /lscratch – compute	node	local	scratch;	allocated	with	batch	jobs

What	are	local	and	network	file	systems?

• Network	file	systems	are	accessed	by	sending	data	to	one	or	more	
servers
• The	server	controls	the	disks	that	store	the	data
• Multiple	different	client	computers	can	access	the	filesystems	simultaneously

• Local	file	systems	do	not	send	data	over	the	network
• Disks	usually	directly	attached	to	the	computer	the	accesses	the	file	system
• Only	that	single	computer	accesses	the	disks	directly

General	best	practices

We’ll	be	talking	a	lot	about	the	“whys”	behind	some	of	these	rules!

/lscratch

The	HPC	Object	Store

• “Web	Scale”	storage
• Highly	reliable	(dispersed	over	multiple	sites)
• Easy	to	expand	(just	add	more	disks)
• Accessed	via	simple	list,	put,	get,	delete	semantics	(examples	forthcoming)

• Different	from	file	based	storage	systems
• Objects	are	accessed	by	NAME,	not	PATH
• Completely	flat	name	space
• No	concept	of	directories,	but	“/”	is	a	valid	character	in	object	names
• Data	and	metadata	are	stored	together	with	the	object	(sometimes	true	in	file	
storage	systems	as	well)

• More	info:	https://hpc.nih.gov/storage/object.html
• Unless	otherwise	noted,	the	rest	of	this	class	deals	with	file (not	object)	
storage.	Separate	object	storage	class!

Use	cases	for	object	storage
• Read-intensive	workloads
• Object	storage	is	much	more	efficient	at	reading	than	writing.
• An	entire object	has	to	be	re-written	for	each	change

• Computationally	expensive	to	process	and	disperse	the	data
• Lots	of	over-writing

• Static	data
• Related	to	the	above
• Data	that	doesn’t	change	often,	but	still	used
• E.g.	reference	genomics	files

Understanding	your	disk	quota

• Use	the	checkquota command
• Shows	all	directories	you have	access	to.
• Mailbox	is	only	shown	on	helix	- mail	service	discontinued	Nov.	30.

• You	can	also	get	this	information	from	your	user	dashboard
• Some	storage	systems	have	limits	on	the	number	of	files	– please	
keep	these	in	mind	(more	on	this	later).

Requesting	quota	increases	

• Default	data	directory	quota:	100	GB
• Quota	increases	must	be	justified.
• Explain	number	of	files,	size	of	files,	and	scientific	use.
• Don’t	use	“prior	experience”	or	“my	lab	mate	said”	or	“I	need	more”

• No quota	increases	on	home	directories

Quota	increases:	now	on	the	user	dashboard!

Quota	increases:	now	on	the	user	dashboard!

Can	only	request	quota	increases	on	
data	directories	you	own!

Quota	increases:	now	on	the	user	dashboard!

• Only	two	things	to	fill	
in	now!
• Amount	of	space
• Justification

• Also	need	to	accept	
storage	policies
• NO	PHI/PII
• NO	BACKUPS!

Using	space	efficiently

• Instead	of	running	to	the	quota	request	form,	think	about	whether	you	can	
be	using	space	more	efficiently.
• Move	files	back	to	your	local	computing	infrastructure	when	you’re	done	processing
• Delete	any	raw	data	or	intermediate	files	that	you’re	sure you	won’t	need	again	(or	
that	are	backed	up	elsewhere)

• Compress		(gzip,	bzip2,	etc.)	files	when	not	in	active	use	(note:	not	all	files	compress	
well).	
• FASTQ	files	should	always be	compressed
• Molecular	dynamics	binary	trajectories	generally	don’t	compress	much

• Storage	space	on	the	NIH	HPC	file	systems	is	NOT	to	be	used	for	archiving.	
However,	we	will	be	introducing	a	time-limited	archive	using	the	object	
store.

Shared	data	directories

• Requested	from	https://hpc.nih.gov/nih/shared_data_request.html
• Now	also	redirects	to	the	user	dashboard.

• A	new	group	will	be	created	(group	name	must	begin	with	a	capital	letter).
• Group	members	must	be	specified

• Justification	for	the	storage	request	must	be	given	as	with	a	personal	data	
directory	quota	increase.
• Don’t	open	your	personal	data	directory	to	world	access!

• Shared	group	directories	should	only	be	accessible	by	the	group	that	owns	them.

• Requestor	becomes	“group	owner”
• The	only	one	who	can	request	a	quota	increase
• The	only	one	who	can	request	users	be	added	to	or	removed	from	the	group

Shared	data	directories	and	permissions

• New	directories	created	under	the	top	level	will	generally	NOT have	the	
SGID	bit	set.
• Users	can	override	group	ownership	and	permissions	of	directories	that	
they	create	within	the	shared	area.
• Some	applications	do	this	without	informing	the	user.

• Coordination	and	care	among	group	members	is	needed.	

Group	owner	– the	ONLY	user	
allowed	to	request	quota	
increases	for	the	group.

Shared	data	directories	and	permissions

• New	directories	created	under	the	top	level	will	generally	NOT have	the	
SGID	bit	set.
• Users	can	override	group	ownership	and	permissions	of	directories	that	
they	create	within	the	shared	area.
• Some	applications	do	this	without	informing	the	user.

• Coordination	and	care	among	group	members	is	needed.	

Group	name	– same	as	the	
shared	data	directory	name.	

Shared	data	directories	and	permissions

• New	directories	created	under	the	top	level	will	generally	NOT have	the	
SGID	bit	set.
• Users	can	override	group	ownership	and	permissions	of	directories	that	
they	create	within	the	shared	area.
• Some	applications	do	this	without	informing	the	user.

• Coordination	and	care	among	group	members	is	needed.	
• Set	umask to	007	so	that	all	files/directories	created	become	group	writeable
• Some	users	request	that	their	primary	group	be	changed	to	the	shared	group

Permissions	– all	group	members	can	write	at	the	top	level.	The	
SGID	bit	(“s”	in	the	group	execute	permissions)	indicates	all	files	
created	in	this	directory	will	have	a	group	ownership	of	SomeLab.	

A	few	notes	about	/scratch

• /scratch	is	a	network	accessed,	global /scratch	directory
• Prior	to	mid-2015	(before	Biowulf 2),	/scratch	was	a	local disk	file	system	
• The	same	scratch	directory	is	available	on	helix,	biowulf,	and	all	of	the	compute	
nodes.

• Files	deleted	if	not	accessed	for	10	days!
• Good	use-cases	for	/scratch

• A	temporary	means	of	sharing	data	with	a	colleague	who	has	a	HPC	account
• Storing	lightly	accessed	temporary	files	that	must	be	accessed	from	multiple	nodes.

• Bad	use-cases	for	/scratch
• Storing	application	temporary	files	that	are	only	accessed	from	a	single	host	(use	
/lscratch instead).

• Storing	anything	that	must	be	read	and	written	frequently	(use	/data	or	/lscratch
instead).

• Storing	valuable,	hard	to	reproduce	data	(no	back-ups;	use	/home	or	/data	as	
appropriate).

Using	/lscratch

• /lscratch =	local	scratch	space	on	a	compute	node
• Allocated	as	a	generic	resource:
• sbatch …	--gres=lscratch:100	ß allocates	100	GB
• swarm	-f	swarmfile	--gres=lscratch:100	...
• Ibid	for	sinteractive
• At	/lscratch/$SLURM_JOBID

• Benefits
• Local	to	node,	no	network	traffic
• Fewer	users	sharing	it
• New	nodes	have	faster	solid-state	disks

When	to	use	/lscratch (and	when	not)

• Use	/lscratch when…
• Many	jobs	will	be	independently reading	in	the	same	data	file.
• Many	jobs	will	be	independently writing	out	output	files.
• Many	jobs	will	be	writing	out	a	lot	of	independent temporary	files
• Jobs	will	be	doing	large	amounts	of	random	I/O	(more	on	this	later)
• Swarms	that	read/write	a	lot	of	I/O	should	almost	always	use	lscratch!!!

• Don’t	use	/lscratch	(or	why	bother)	when...
• Your	job	needs	to	write	out	a	file	visible	to	multiple	nodes	(this	is	rare?)
• Your	job	is	only	reading/writing	a	few	files	and	not	very	much	data.

• If	in	doubt,	e-mail	staff@hpc.nih.gov

Workflow	for	/lscratch

• Copy	high-intensity	input	data	from	network	directory	to	lscratch
• Don’t	have	50	independent	processes	all	reading	the	same	input
• Copy	the	input	into	each	process’s	lscratch directory
• Multiple	copies	per	host?	Can	avoid	this	with	clever	scripting…
• Remember	to	copy	results	back	when	done	– lscratch	goes	away	after	your	
job	finishes!

• Use	lscratch	for	temporary	files/scratch	space
• Set	environment	variables	– e.g.	$TMPDIR,	$SCRATCH
• Scratch/temp	space	variables	are	often	program	specific	– need	to	know	your	
application

• Use	lscratch	as	a	local	cache	for	objects	from	the	object	store.

Snapshots

• No	back-ups	of	HPC	data	directories,	but	there	are	snapshots.
• A	snapshot	is	a	copy	of	the	directory	as	it	existed	at	a	given	point	in	
time.
• Current	snapshot	retention	policies:
• /home	– 7	hourly,	6	daily,	8	weekly
• /data	– 2	daily,	2	weekly
• Weekly	snapshots	are	taken	on	Sundays	for	NFS	home	directories	and	on	
Tuesdays	for	GPFS	data	directories.

Accessing	snapshots
• Navigate	to	.snapshot/	in	your	/data	directory

• Will	NOT	tab	complete;	need	to	type	out	the	full	directory	name.
• Will	see	several	subdirectories	that	contain	read-only	copies	of	your	directory	at	a	point	in	time.
• Can	copy	data	from	snapshots	into	your	“main”	home	directory	if,	for	example,	you	accidentally	
delete	a	file!

Snapshots	are	NOT	back-ups

Snapshots	are	stored	on	the	same	physical	
hardware	as	home/data	directories.	Therefore,	in	
the	event	of	a	hardware	or	facilities	failure,	the	
snapshots	will	also	be	lost!

You	must	back	up	irretrievable	data	to	a	local	
system	(or	put	it	in	your	/home	directory	if	it	will	
fit).

A	guide	to	choosing	a	storage	system
• /home

• Small	files	that	are	very	important,	low	I/O	intensity
• Not	for	files	that	need	to	be	shared	with	other	users

• /data
• Bulk	data	files	and	scripts
• Consider	using	shared	data	areas	for	sharing
• Shared,	parallel	filesystems	– intensive,	single	node	I/O	->	
/lscratch.

• /scratch
• Low	I/O	intensity job	data	that	needs	to	be	accessed	from	
multiple	nodes.

• Good	for	short-term	sharing.
• /lscratch

• High	I/O	intensity job	data	that	only	needs	to	be	accessed	
from	a	single	node.

• Object
• Primarily	read-only	data;	low	to	medium	intensity,	but	large	
capacity.

Course	overview/outline
• Overview	of	HPC	systems	storage
• Different	areas	(/home,	/data,	/scratch,	object	store)
• Quotas	and	quota	increases
• Snapshots

• Understanding	input	and	output	(I/O)
• I/O	patterns	
• Introduction	to	data	and	metadata
• A	brief	look	at	HPC	storage	systems

• Putting	it	all	together	– using	storage	effectively
• Profiling	and	benchmarking	your	application’s	I/O	usage
• Understanding	when	you’re	generating	too	much	I/O	on	the	system	

A	block	about	blocks

• A	filesystem	organizes	files	and	directories	into	blocks	of	data
• This	is	because	hard	disks	can	only	read	and	write		information	in	discrete-sized	chunks.

• Each	non-zero	length	file	you	store	takes	up	at	least	one	full	block	on	the	
filesystem.
• The	exact	size	of	a	block	differs	from	filesystem	to	filesystem	and	may	be	chosen	by	the	
administrator	who	creates	the	filesystem.

Sequential	vs.	random	access
• Sequential	access:	blocks	in	a	file	are	
read	one	after	the	other
• Example:	reading	in	a	series	of	sequences	
from	a	file,	one	after	another.
• Sometimes	referred	to	as	“streaming”.
• E.g.	reading	a	FASTQ	file	into	memory

• Random	access:	blocks	in	the	file	are	
read	in	a	random	order.
• Common	in	database	applications
• Much	harder	for	I/O	systems	to	optimize
• Generally	MUCH slower!
• E.g.	Pulling	non-adjacent	sequences	from	
a	BAM	file.

I/O	comes	in	all	sizes

• In	addition	to	the	pattern of	I/O,	we	also	have	to	be	concerned	with	
the	size	of	I/O.
• Which	do	you	think	will	be	faster?
• An	application	that	reads	100	MB	sequentially	by	issuing	50	read	requests	of	2	
MB	each
• An	application	that	reads	100	MB	sequentially	by	issuing	5000	read	requests	
of	20	KB	each

• The	first	case	is	(usually)	a	lot	faster
• There’s	a	certain	amount	of	overhead	in	performing	requests.
• Some	systems	will	try	to	coalesce	multiple	small	requests	into	bigger	ones
• With	random	I/O,	this	can	be	difficult	to	impossible.

I/O	comes	in	all	sizes

• In	addition	to	the	pattern of	I/O,	we	also	have	to	be	concerned	with	
the	size	of	I/O.
• Which	do	you	think	will	be	faster?
• An	application	that	reads	100	MB	sequentially	by	issuing	50	read	requests	of	2	
MB	each
• An	application	that	reads	100	MB	sequentially	by	issuing	5000	read	requests	
of	20	KB	each

• The	first	case	is	(usually)	a	lot	faster
• There’s	a	certain	amount	of	overhead	in	performing	requests.
• Some	systems	will	try	to	coalesce	multiple	small	requests	into	bigger	ones
• With	random	I/O,	this	can	be	difficult	to	impossible.

Unless	you	are	writing	your	own	application,	
you	don’t	have	any	direct	control	over	this.	
However,	it’s	something	to	be	aware	of!

Data	vs.	metadata

• When	we	think	of	a	file,	we	usually	
think	in	terms	of	the	data it	contains.
• A	BAM	file	contains	sequence	alignments
• A	molecular	dynamics	trajectory	
contains	atomic	coordinates/velocities
• An	MRI	output	contains	an	image	of	
someone’s	brain.
• An	EM	image	contains	a	picture	of	a	cell	
in	the	body.

• Metadata literally	means	“data	about	
data”

Data	vs.	metadata

• Examples	of	metadata
• When	the	file	was	created/accessed
• The	sample	ID	from	which	the	file	was	
generated
• The	access	permissions	of	the	file
• Where	the	data	is	located	physically	on	
the	underlying	disk
• Can	you	think	of	more	examples?

A	conceptual	diagram

• Remember	our	simple	schematic…

This	is	the	DATA	
in	the	file.

This	is	(some	of)	
the	METADATA

Some	notes	on	directories

• Directories	are	special	files	that	hold	pointers	(links)	to	other	files.
• The	more	files	there	are	in	a	directory,	the	larger	amount	of	space	the	
directory	blocks	will	take	up	on	disk
• Listing	directories,	resolving	path	names,	moving	files,	etc.	all	require	
operations	on	the	directory	blocks.
• The	file	system	has	to	iterate	through	files	in	the	directory	individually
• The	bigger	the	directory	is,	the	longer	these	operations	will	take.
• This	is	why	the	HPC	staff	recommends	having	<	5000	files	per	directory
• Especially	true	with	directories	that	will	have	lots	of	operations	happening	
simultaneously!

File	and	directory	parallel	access

• Reading	and	writing	the	same	file	from	multiple	
parallel	jobs	can	cause	contention.
• Especially	with	writing	– due	to	the	need	for	locks	to	
avoid	corruption	

• Likewise,	lots	of	different	processes	listing,	
creating	files,	etc.	in	the	same	directory	is	a	
bottleneck.
• Constant	creation	and	deletion	of	files	can	create	
performance	issues,	particularly	when	multiple	
processes	are	doing	it	in	the	same	directory.

Exercise:	Good	practice	or	bad	practice?

• Which	of	the	following	are	not	good	practice?	Why?
• Having	1,000,000	data	files	in	a	single	directory.
• Having	separate	runs	of	a	program	write	output	to	separate	files.
• Reading	a	data	file	in	once	at	program	initiation,	and	then	keeping	the	data	
cached	in	memory.
• Using	the	name	of	a	file	to	encode	program	results.
• Having	a	swarm	of	1,000	jobs	each	use	the	same	temporary	directory	in	
/scratch.	

Basic	storage	system	architecture

• /home,	/scratch,	and	some	/data	
directories	are	on	a	large	storage	
system	that	uses	NFS.

Basic	storage	system	architecture

• Other	data	directories	are	on	systems	
running	IBM’s	General	Parallel	File	System	
(GPFS)
• Use	“checkquota --gpfs”	to	determine	if	
any	of	your	data	directories	are	on	GPFS.

NFS	and	GPFS

• NFS	and	GPFS	have	different	back-end	implementations,	but	from	a	user’s	
perspective,	they	work	the	same	way.
• The	systems	perform	similarly,	though	file	system	performance	is	variable	
dependent	on	how	many	users	are	accessing	a	given	filesystem	at	any	one	
time.
• There	is	no significant	performance	advantage	to	using	one	system	vs.	the	other.

• Main	difference	from	a	feature	perspective:	GPFS	has	access	control	lists	
(ACLs)	whereas	the	NFS	implementation	we	use	does	not.
• ACLs	are	an	advanced	way	of	setting	granular	file/directory	permissions	– see	
https://hpc.nih.gov/storage/acls.html for	more	details

• We	will	not	discuss	ACLs	further	(unless	someone	really wants	to).

Figuring	out	where	your	data	is	stored

• You	can	use	the	“-a”	flag	on	checkquota to	see	what	filesystems	the	directories	
you	have	access	to	are	on.
• spin1	=	NFS,	/gs[2-8]	=	GPFS
• Can	also	use	“checkquota --gpfs"
• NEVER refer	to	any	data	directory	by	its	absolute	path	(i.e.	use	/data/username	
NOT /spin1/users/username
• The	storage	admins	move	directories	for	a	variety	of	reasons,	so	the	absolute	paths	can	and	
do	change.

What	you	can	do	to	avoid	bottlenecks!

• Use	/lscratch whenever	possible!!!
• Since	lscratch is	local	to	the	node	– avoid	all	network	operations
• Also,	lscratch on	newer	nodes	is	provisioned	with	SSDs!

• Avoid	many	parallel	I/O	operations.
• They	tend	to	oversaturate	the	disks

• Try	to	do	I/O	on	large	chunks
• i.e.	read	and	write	large	amounts	of	data
• Less	network	overhead,	and	easier	for	the	disk	systems	to	optimize
• If	you’re	using	someone	else’s	code,	this	is	difficult/impossible

• Avoid	excessive	metadata	operations
• Tend	to	be	filtered	to	a	small	amount	of	disks/controllers.
• This	includes	directory	operations!

Exercise	– where	is	the	bottleneck?

• For	the	”bad	practices”	we	identified	earlier	(marked	in	red),	what	
bottlenecks	are	likely	to	be	relevant?
• Having	1,000,000	data	files	in	a	single	directory.
• Having	separate	runs	of	a	program	write	output	to	separate	files.
• Reading	a	data	file	in	once	at	program	initiation,	and	then	keeping	the	data	
cached	in	memory.
• Using	the	name	of	a	file	to	encode	program	results.
• Having	a	swarm	of	1,000	jobs	each	use	the	same	temporary	directory	in	
/scratch.	

Course	overview/outline
• Overview	of	HPC	systems	storage
• Different	areas	(/home,	/data,	/scratch,	object	store)
• Quotas	and	quota	increases
• Snapshots

• Understanding	input	and	output	(I/O)
• I/O	patterns	
• Introduction	to	data	and	metadata
• A	brief	look	at	HPC	storage	systems

• Putting	it	all	together	– using	storage	effectively
• Understanding	when	you’re	generating	too	much	I/O	on	the	system	

How	do	you	know	if	you’re	abusing	the	
storage	systems?
• This	can	be	difficult	to	know,	but	there	are	a	few	clues
• Very	slow	access	to	working	directories	involved	with	the	job.	(ls	etc.	take	a	
long	time	to	return)
• For	swarms,	job	completion	speed	was	acceptable	for	small	numbers	of	jobs,	
but	gets	dramatically	slower	as	the	size	or	number	of	jobs	increases.
• You	did test	with	small-scale	jobs	first,	right?!

• The	problem	may be	with	another	user’s	jobs,	but	if	you	started	seeing	
problems	right	after	you	started	a	bunch	of	jobs,	you are	the	prime	suspect.

• HPC	staff	will	notify	you	if	we	notice	your	jobs	having	an	impact
• However,	please	be	proactive	and	don’t	wait	for	us	to	notice	the	problem
• If	we	send	you	mail,	it	means	you’re	having	a	significant negative	impact	on	
system	performance.

Refactoring	a	workload	– general	principles

• Look	for	places	where	lots	of	parallel	processes	are	doing	I/O
• Think	about	if	only	one	process	could	do	I/O	and	communicate	with	other	
processes	(probably	not	possible	with	swarm).
• Can	some	or	all	of	that	I/O	use	/lscratch instead	of	/scratch	or	/data?

• Think	about	bottlenecks	in	the	workflow
• E.g.	the	whole	workload	has	to	wait	until	one	file	is	updated
• Does	the	usage	on	a	shared	filesystem	cause	delays	in	this	process?

• Does	the	workflow	behavior	change	over	time?
• Do	jobs	have	different	I/O	patterns	in	the	beginning,	middle,	or	end	of	their	
runs.
• Would	staggering	this	I/O	be	possible?

Workload	refactoring:	an	example
• Start	of	a	real-world	genomics	pipeline

• Aligns	sequences,	creates	index
• RSeQC performs	QC	steps	before	continuing	the	pipeline

• Pipeline	ran	much	more	quickly	after	workload	was	refactored	to	use	I/O	more	
efficiently!

Original	Pipeline

• Lots	of	read	and	writes	back	
to	network	storage.
• Many	parallel	processes	
reading	the	same	data	from	
the	storage	system.
• Depending	on	the	exact	
analysis	done	by	RSeQC,	
random	I/O	is	heavy.
• Remember,	lots	of	RSeQC
processes	in	parallel.

• How	would	you	fix	this?

Refactored	pipeline

• Only	writes	to	networked	
storage	when	needed.
• E.g.	not	after	the	initial	read,	
only	when	index	is	built.

• Instead	of	each	RSeQC
reading	the	data	from	
network	storage,	use	local	
scratch
• Only	write	out	final	result	
files.

IOPS	comparison

• Bottom	line	1:	User	was	able	to	do	more	science	in	less	time.
• Bottom	line	2:	HPC	storage	admins	did	not	have	to	troubleshoot	
performance	problems.

staff@hpc.nih.gov

Wrap-up;	Q&A

• Thank	you	for	coming!
• We	hope	you	are	able	to	apply	the	lessons	learned	to	your	own	particular	
storage	issues.
• PLEASE	reach	out	to	staff@hpc.nih.gov for	assistance;	we’d	love	to	work	with	
you	proactively instead	of	reactively.

• Please	provide	feedback	on	this	presentation!
• E-mail	Tim	btmiller@helix.nih.gov
• E-mail	Mark	patkus@helix.nih.gov
• General	questions	staff@hpc.nih.gov

Upcoming	Seminars

• November	30,	1	- 3	pm																																																																								
Python	in	HPC
Overview	of	python	tools	used	in	high	performance	computing,	and	
how	to	improve	the	performance	of	your	python	jobs	on	Biowulf
• Jan	16,	1	- 3	pm	
Relion tips	and	tricks,	and	Parallel	jobs	and	benchmarking
Mechanics	and	best	practices	for	submiting RELION	jobs	to	the	batch	
system	from	both	the	command	line	and	via	the	RELION	GUI,	as	well	
as	methods	for	monitoring	and	evaluating	the	results.	Scaling	of	
parallel	jobs,	how	to	benchmark	to	make	effective	use	of	your	
allocated	resources

