
Introduction to Linux

Bash and Basic GNU/Linux and Unix Concepts

12/4/20191

This class will….

12/4/2019

 Get your toes wet. Unix and
Linux are gargantuan topics that
only come into focus with
experience.

 Provide some basic concept
information for users familiar
with MacOS or Windows.

 Get you familiar with Linux
commands.

 Get you started in
understanding command line
interfaces.

2

Class outline

12/4/20193

 History of Linux

 Kernel and shells

 The bash shell

 Files and directories

 File ownership and permissions

 Essential Linux commands with exercises

 File transfer

 Processes

 Compressing files

 cron

History

Late 60’s through 1980’s

 Unix is the result of Bell Labs
research (Dennis Ritchie, Brian
Kerningham, Ken Thompson, et al).
Originally written in assembly
language.

 Unics (Unix) was named in contrast
to MIT’s Multics operating system.

 Berkeley Software Distribution (BSD),
or Berkeley Unix derived from Bell
Labs’ work in part due to government
monopoly agreements.

 Unix led to the BSD family of
operating systems in the 1990’s.

12/4/20194

History

Richard Stallman, in 1983

 Started the GNU (GNU’s Not Unix!)
project

 Open-sourced versions of standard suite
of Unix utilities found in BSD

 GNU is also a software license – allows
for code modifications as long as they are
shared

 Utilities used in Linux, BSD-derived and
proprietary Unix operating systems

 All commands in this lesson are from
GNU

12/4/20195

History
Linus Torvalds, in 1991

 Released the first version of his Linux
kernel.

 Started as a study in processor
architectures while at the University of
Helsinki, Finland, and to this day still
has the authority on what gets
included in the Linux kernel

 In 1992 adopted the GNU license and
rapidly gathered developers

 Combined the GNU suite of utilities
with a new operating system kernel
(GNU/Linux)

12/4/20196

History

 By the mid 1990’s/early 2000’s
GNU/Linux starts to gather
main-stream adoption, especially
in research and academic circles
due to structural similarities with
Unix and BSD

 Gains large market share of
commercial servers

 Becomes usable for desktop
adoption

 Present on gadgets (e.g. Android
smartphones, home routers, car
information systems, etc)

12/4/20197

Popular Linux Distributions

 Red Hat Enterprise Linux

 CentOS

 Fedora

 Debian

 Ubuntu

 Suse Linux

 Linux Mint

12/4/20198

Linux in Science (why?)

 Popular due to shared functional legacy with Unix systems

associated with research (Irix, SunOS/Solaris, etc.)

 Source code availability and semi-liberal licensing made it easy

for researchers to adjust the kernel as needed.

 Community backing and “perfect- storm” of enthusiasm for the

project led to critical mass of development (in contract to the

BSD family)

 Licensing and well known Unix-style APIs make it easy for

vendors of HPC equipment to write drivers for their hardware.

 Wide range of tools available for users (compilers, scientific

libraries, debuggers, etc).

 Performance, functionality and portability

12/4/20199

Concepts: Kernel

 Operating system “kernel” is the core software used to

“talk” to computer hardware

 It’s a core and modular system of drivers used to create a

standardized environment for interfacing with hardware

 Resource manager for allocating memory and time to

system and user processes as well as interacting with files

(I/O)

 Kernel operates in its own memory or “kernel-space”

12/4/201910

Kernel

CPU

Memory

Devices
Applications/

processes

Users

Your Shell

 On user log-in, the system runs a shell

 A shell is the environment within which

you will interface with the kernel via

commands

 It determines the syntax for complex

command-line operations and shell

scripting

 The shell you’re using is called “bash,” the

successor to the venerable “Bourne Shell”

called “sh”

 BASH: “Bourne Again SHell”

12/4/201911

Various Shells

12/4/2019

 sh – the original UNIX shell (Bourne shell)

 bash – written as a replacement/extension of
sh

 csh – C shell based on the C programming
language developed in the late 1970s

 tcsh – enhanced version of C shell

 ksh – Korn shell developed in the early 1980’s,
backward compatible with sh, but with some
features of csh

 zsh – extended version of sh, developed in
1990

 dash – developed as replacement for ash in
Debian

12

Linux accounts

12/4/2019

 To access a Linux system, you need to have an account

 A Linux account includes the following:

- username and password

- uid and gid

- a home directory, which is where you are placed by

default when you log in

- a default shell

13

Using SSH to log in:

But First! Introducing OpenSSH:

 SSH is the “Secure SHell”

 All traffic over SSH is encrypted

 Developed as a secure alternative to

RSH and Telnet

 SSH supports a file-transfer subsystem

- SCP

 SSH can act as an encryption layer for

arbitrary network connections

12/4/201914

Logging in

 MacOS:

 Finder -> Applications -> Utilities -> Terminal

 Now type: “ssh username@helix.nih.gov”

 At the prompt, enter the account password

 Windows:

 Launch PuTTY. Under “Host Name (or IP address), type:

username@helix.nih.gov

 …and click “Open”

 At the prompt, enter the account password

12/4/201915

Logging out

DON’T run this now, but to log out of a ssh session on a

Linux system, you would type exit:

$ exit

12/4/201916

More on shells

12/4/2019

 What shell am I in? Typing “echo $SHELL” will show you!

 You should see ‘/bin/bash’

 Typing “echo $0” will also show your shell

 $SHELL and $0 are shell variables…more about variables

later

 List of available shells on the system can be displayed by

typing “chsh --list-shells”

 The chsh command can be used to change your default

shell as well, but on Biowulf & Helix never change it to a

shell that ends in LOCKED, SUSPENDED, DISABLED –

you will lock yourself out of your account!

17

Shell preferences

12/4/2019

 When you login, startup scripts are run to setup your
environment

 For bash, you can customize your environment by adding or
modifying environment variables and aliases in the .bashrc
file in your home directory.

 Examples:

alias ls=‘ls -rtl’

alias bwulf='ssh $USER@biowulf.nih.gov'

PATH=$PATH:/data/myusername

EDITOR=/usr/bin/vim

PS1="[\u@\h \w \#]"

set -o noclobber

18

Summary of Linux commands
awk allows manipulation of text

bg place suspended job into background

cal display calendar

cat view contents of a file

cd change directory

chmod change permissions on a file/directory

cp copy a file

cut extract a field of data from text output

diff compare files line by line

echo output text to the terminal or to a file

emacs text editor

fg bring suspended job to foreground

file display file type

find search for files

grep search a file or command output for a pattern

head view beginning of file

history display list of most recent commands

less scroll forward or back through a file

ln create a link to a file

ls list files in a directory

man view information about a command

mkdir make directory

more scroll through file a page at a time

mv change the name of a file (move)

nano/pico text editors

printenv display shell variables

ps show current process information

pwd print current working directory

rm delete or remove a file

rmdir delete or remove a directory

sed stream editor

sleep pause

sort perform a sort of text

tail view end of the file

touch create an empty file or update timestamps

tr character substitution tool

uniq remove identical, adjacent lines

vi/vim text editor

wc print number of lines, words or characters

which shows full path of a command

whoami displays username

12/4/201919

Our cast! (of characters)

Character Name/Location

\ Backslash (above the enter key)

/ Slash (left of right shift key)

` Back-tick (left of the number 1, above the tab key)

| Pipe (shift-\)

[and] Brackets (left of the backslash)

{ and } Braces or “curly” brackets (shift-[and shift-])

< and > Angle brackets (left of the right shift key)

~ Tilde (shift-~)

!, @, #, $,

%,^, &, *,

(,)

(!) Bang/exclamation mark, (@) at sign, (#) hash, ($)

dollar/string, (%) percent, (^) caret, (&) ampersand, (*)

asterisk/start, and the left and right parenthesis.

12/4/201920

Linux Command Basics

12/4/2019

 Linux commands are case-sensitive

ls is not the same as LS

 Linux commands may have options that come after the
command that start with a “–” and followed by a letter or “- -”
and a word:

$ ls –r

$ ls --reverse

 Linux commands may allow for arguments:

$ ls /tmp

 You can run more than one command on the same line by
separating the commands with a semicolon (;)

$ ls;date

 Most Linux commands have a manual page or help to describe
how they can be used….more about this later!

21

Linux Command Example

12/4/2019

$ ls –r /home/$USER

22

prompt

command

option

argument

Exercise #1: First commands

[username@helix ~]$

 Type “whoami”, press Enter – who are you?

 Type “pwd”, press Enter – where are you?

 Type “echo $HOME” – what does it show?

 Type “echo $USER” – what does it show?

 Type “echo $PWD” – what does it show?

 $HOME, $USER and $PWD are three more examples of

shell variables as we saw earlier with $SHELL

12/4/201923

Concepts: Files and Processes

In Unix, and by extension, Linux,
everything is either a file or a process.
Meaning everything can be interfaced via
the file system(s).

 Files: text, data, documents, traditional
files

 Directories: directories are special text
files that contain a bunch of other files

 Devices: all disks, video hardware, audio
hardware, processors, memory, USB
ports – all hardware can be interfaced
via files (usually in /dev)

 Processes: all running processes can be
“seen” via the file system (in /proc) –
each has a unique identifier (PID)

12/4/201924

More on Files

12/4/2019

 Each file (and directory) has a name

 The filename can contain letters, numbers and special
characters – best to start with name or number

 Every file has a unique path to its location

Example: /home/student2/read-write.txt

 A filename MUST be unique within a directory…though
files with the same filename can exist in different
directories

 Like Linux commands, filenames are case sensitive so a
file named “myfile” and “Myfile” can co-exist in the same
directory – the names are different.

 Filenames can be lengthy

25

More on Directories

12/4/2019

 A directory is a special type of file that can hold other files –
often referred to as a folder in Windows or MacOS

 The “working directory” is the directory with which your shell
is currently associated…where you currently are! When you
first login, you will normally be in your home directory,
/home/username

 Use the ‘pwd’ command to print working directory

 Special directory notations:

 . refers to the current working directory

 .. refers to the parent directory (one level back – the parent
directory of /home/username would be /home)

26

Pathname

12/4/2019

 Every file has a unique path to its location…for example:

/home/student2/Projects/docs/final_report.doc

 ‘/home/student2’ is the home directory for student2

 ‘Projects’ is a directory in /home/student2 - student2

is the parent directory of Projects

 ‘docs’ is a directory in ‘Projects’ – docs is a

subdirectory or child directory of Projects

 ‘final_report.doc’ is a file in ‘docs’

27

Concepts: The File System

 Linux and Unix-like file systems are arranged in a tree
structure, all with the same bottom level, called “root”
(/).

 Unlike Windows there are no drives, drive letters or
any separate conceptual “space” for storage hardware.

 New hardware will come in the form of a “file system”
attached (mounted) to some arbitrary point in the
directory structure.

12/4/201928

Linux Directory Structure

 / root

 /bin bare essential commands

 /boot OS Kernels

 /dev hardware devices

 /etc system files, configuration

 /home home directories

 /lib Libraries needed by the system

 /opt 3rd party applications

 /proc Running processes

 /sbin administrative commands

 /tmp temporary space

 /usr operating system applications

 /var Logs, databases and other variable length stuff

12/4/201929

cd and ls commands
 The “cd” command is used to change directory location. Without an

argument, “cd” takes you to your home directory

 The “ls” command is used to list the files in a directory. Like many Linux

commands, it can take a number of “flags” as options to change the behavior

of the command

$ cd /home/$USER

$ ls

$ cd /etc

$ pwd

$ ls

$ ls –l

$ ls -rl

$ cd

$ pwd

12/4/201930

Exercise #2: “cd” and “ls” commands

 Type “cd /data/classes/linux”

 Try “ls -l”

 Try “ls -a”

 Try “ls -la”

 How are the above outputs different?

 Type “ls –lt”

 How is this output ordered?

 Type “ls –l /tmp”

The above shows how providing an argument to the ‘ls’ command displays
the contents of a directory without first changing to the directory

 Type “cd /home/$USER” to change to your home directory

 Now type “cd -”

 To what directory did that take you?

 Now type “cd ..”

 To what directory dis that take you?

 Type “cd /home/$USER” to get back to your home directory

12/4/201931

Finding your way home!

12/4/2019

 The “~” is a special character that is short-hand for
“/home/username”

 The shell variable $HOME also stores the path of
“/home/username”

 Several ways to get to your home directory:

 But you can also use the “~” and $HOME as arguments with
other commands:

$ cd ~

$ cd $HOME

$ cd /home/username

$ cd /home/$USER

$ cd

$ ls ~/tmp

$ ls $HOME/LinuxClass

32

Absolute and Relative paths

 The starting “/” in the
directory argument explicitly
spells out a pathname –
specifying an absolute or full
path

 No leading “/” means you are
specifying a path that is
relative to the current
working directory.

 “cd /tmp” is different from
“cd tmp”

$ cd /home/username

Absolute path:

$ cd /home/username/tmp

Relative path:

$ cd tmp

Using ~

These do the same:

$ cd ~/tmp

$ cd /home/username/tmp

12/4/201933

Help!

 Many commands provide a ‘--help’ option which will display information on

the various options and there means. For example:

$ ls --help

 There is also the “man” command, which will provide a manual listing on

the use of standard Linux commands such as ls one page at a time

$ man ls

 One can scroll forward or back one line at a time using the up & down

arrow keys and scroll forward or back one page at a time by hitting the ‘f ’

or ‘b’ keys, respectively.

 Exit out of a man page by typing ‘q’

 Try both of the above commands

12/4/201934

Users and Groups

 Users are associated with a unique

user identification (UID) number

that the system uses internally

 Users can be real people

 Users can be system entities

 Users can be herded via groups

 Groups also are associated with a

unique group identification (GID)

number by the system

 Groups allow multiple users to

access/share the same files

12/4/201935

Ownership & Permissions

12/4/2019

 Linux systems are multi-user environments that allow users to
create files, run programs and share data.

 Files and directories have two types of ownership – the user and
group. A Linux group consists of one or more users.

 Files and directories have three types of access permissions:

read permission (r)

write permission (w)

execute permission (x)

 Every file and directory has permissions for three levels or entities
of permissions:

a) user or owner (denoted by u)

b) group (one or more users – denoted by g)

c) others or world (denoted by o)

36

Permissions triplets

Each triplet indicates the access permissions for that level – in

the example below, the user/owner has read, write & execute

permission, other group members only have read and execute

permissions and all others have no access permissions.

-rwxr-x---.

12/4/201937

Long List Output Explained (a little)

 From left to right:

• Unix permissions

• Hard links

• Owner

• Group ownership

• File size in bytes

• Modification date

• Name of file

Special Directories:

• . is the current working directory

• .. is the “parent” directory, one level “back”

$ ls -la

drwxrwx--- 104 mark staff 110592 Aug 17 13:02 .

drwxr-xr-x 2510 root root 196608 Aug 17 12:58 ..

-rw-r--r-- 1 mark mark 1051 May 8 2016 ad-week

-rwxr--r-- 1 mark staff 239 May 11 2013 alias.pl

-rw-r----- 1 mark staff 1185 Jun 22 2014 bp.txt

-rwxr-xr-x 1 root root 27320 Mar 29 2015 getpass.awk

-rw-rw-r-- 1 david staff 20529 Aug 7 2017 httpd.conf

-rwxr--r-- 1 root staff 136236 Sep 10 2017 memcon

drwxr-x--- 2 mark staff 4096 Jun 24 2017 misc

drwx------ 3 mark staff 4096 Jun 24 2017 test

-rwx------ 1 mark staff 493 Feb 10 2016 unlock

-rw-r----- 1 mark staff 38 Oct 20 2017 world.c

-rwxr-x--- 1 mark staff 6703 Jan 8 2017 world.exe

-rwxrwx--- 1 mark staff 2350 May 22 2017 year.pl

lrwxrwxrwx 1 mark staff 7 Aug 16 15:30 year2 -> year.pl

12/4/201938

Permissions described:

File Type: Permissions

• “-” regular file

• “d” directory

• “l” symlink

• “b” block device

• “c” character device

• “p” named pipe

• “s” socket

• “r” read

• “w” write

• “x” execute

Special values:

• “s” or “t”: executable
and setuid/setgid/sticky

• “S” or “T”: setuid/setgid
or sticky, but not
executable.

12/4/201939

Changing Permissions and Ownership

12/4/2019

 Use ‘chmod’ to change the file permissions:

chmod [ugoa][+/-][rwx] filename

where u=user, g=group, o=others or world and a=all three

For example, to provide group read access to a file:

$ chmod g+r myfile

Or to remove file access to another than the owner or group members (in other
words, others):

$ chmod o-rwx myfile

 The ‘chown’ command is used to change file ownership and the ‘chgrp’ command
can change group ownership of a file. As a regular user, you can not change
the ownership of a file, but you can change the group ownership if you
are a member of the group to which you are changing the group
ownership

 You can use the –R argument on any of the above to recursively make changes on a
directory of files

40

Exercise #3 pre-exercise

12/4/2019

 We’ll talk about some of these commands shortly, but you each need
to make a copy of files needed for the rest of class.

 First go to your home directory

$ cd /home/$USER

 Make a ‘LinuxClass’ directory using the ‘mkdir’ command & go into
that directory:

$ mkdir LinuxClass

$ cd LinuxClass

 Copy the files from the exercise file to your directory using ‘cp’:

$ cp –r /data/classes/linux/* .

$ ls -l

 Create a shell variable to your class directory:

$ class=$PWD

$ cd $class

41

Exercise #3: File Permissions

Read Permissions Execute Permissions
The cat command displays
contents of a file

$ cd /home/$USER/LinuxClass

$ cat read-write.txt

Change the read permission

$ chmod u-r read-write.txt

$ cat read-write.txt

What happened? Now restore the
read permission

$ chmod u+r read-write.txt

$ cat read-write.txt

$ cd /home/$USER/LinuxClass

Run the myhostname file to see the
system name

$./myhostname

Remove the execute permission for the
user on the myhostname file:

$ chmod u-x myhostname

$./myhostname

What happened?

$ chmod u+x myhostname

$./myhostname

Change permissions on the directory
dir-perms:

$ chmod u-x dir-perms

$ ls dir-perms

$ ls –l dir-perms

What happened and why?

12/4/201942

Wildcards

12/4/2019

 With many Linux commands, you can use wildcards to match
characters

 The ‘*’ can be used to match zero or more characters

Examples:

$ ls bear*

bears bears7 bears_chicago

$ ls *bear*

bears bears7 bears_chicago polarbears

 The ‘?’ can be used to match EXACTLY one character

$ ls bears?

bears7

43

Special Keys

12/4/2019

Tab Key allows for command auto-completion

Single Quote vs Back Tick

Arrow keys allow you to:

a) Move horizontally along the command to make changes without deleting and retyping

everything

b) Move vertically through your history of previously run commands

Back

tick

Single

quote

Tab

Arrow

keys

ESC

Ctrl

44

Ctrl-c, ESC & command line editing

12/4/2019

 If you get into a situation where you can’t seem get back

to a command line prompt, try hitting the Ctrl-C

combination or the Esc key – often one of those will

abort whatever you are currently doing.

 The Ctrl character is often represented by the ^

 Use Ctrl-a to go to the beginning of the line

 Use Ctrl-e to go to the end of the line

45

What is that file?

file

The “file” command tells us what type of file it might be

– text, executable, PDF, jpg, gzip, tar, directory, etc.

$ file read-write.txt

$ file world.exe

$ file examples

$ file Linux_slides.pdf

12/4/201946

cat and echo

Use cat to display file contents to the terminal:

echo is used to output arbitrary text to the terminal:

$ cat bears

$ cat bears7

$ cat bears bears7

$ echo ‘Hello World!’

$ echo without single quotes

$ echo ‘Hello World!’ > MyWorld

12/4/2019

“cat” is short for concatenate. The “cat”

command takes one or more files and

concatenates their contents to standard output.

47

Output Redirection to Files

Redirect output (>):

Append files (>>):

$ cat bears > Teddybears

$ cat Teddybears

$ cat bears bears7 > bothbears

$ cat bothbears

$ cat bears* > allbears

$ echo ‘Hi there!’ > greeting

$ cat greeting

$ echo ‘Hi yourself!’ >> greeting

$ cat Teddybears >> greeting

$ cat greeting

12/4/201948

Exercise #4: cat and echo

cat a file to view contents

Using echo

12/4/2019

$ pwd

$ cd /home/$USER/LinuxClass

$ cat lions

$ cat tigers

$ cat bears

$ cat lions tigers > animals

$ cat animals

$ cat bears >> animals

$ cat animals

$ echo my name is Chris

$ echo “my name is $USER” > myname

$ cat myname

$ echo Hello $USER >> myname

$ cat myname

49

Symbolic links

Allows you to reference same file with different name

or path – a symbolic link is a another file type.

Example:

$ ln –s /home/$USER/LinuxClass/examples/tmp/colors color-pairs

$ ls –la color-pairs

$ cat /home/$USER/LinuxClass/examples/tmp/colors

$ cat color-pairs

12/4/2019

$ ln –s <existing_file> <file_link>

$ cat Capitals

$ ln –s Capitals CapCities

$ ls –l Cap*

$ cat CapCities

50

Creating files/directories

Using touch and mkdir

To create an empty file, use the touch command:

$ touch my_data_file

You can also create a file using an editor such as pico,

nano, vi or emacs:

$ nano Music

To create a directory:

$ mkdir Mydirectory

$ mkdir 2017

$ mkdir –p 2018/Jan/stats

12/4/201951

Deleting files/directories

Using rm and rmdir

To remove a file:

$ rm my_data_file

$ touch myFile

$ chmod u-rwx myFile

$ rm myFile

$ rm –f myFile

To remove a directory:

$ rmdir Mydirectory

$ rm –r 2017

rmdir only works if the directory is empty!

Dangerous:

$ rm –rf *

12/4/201952

Exercise #5: Creating and deleting files

Creating a file, directory & symbolic link

Deleting a file and directory

12/4/2019

$ cd /home/$USER/LinuxClass

$ echo ‘I love genomic research!’ > science

Now create a file named science_project and a directory named
scienceclass (hint: use touch & mkdir)

$ ls –ld science*

$ ln –s “/home/$USER/LinuxClass/examples/tmp/ice_cream” Ice_cream

$ ls –la Ice_cream

$ cat Ice_cream

$ rm science*

$ ls –ld science*

What happened?

$ rmdir scienceclass

53

Displaying Portions of a File

“more” or “less”

“head” or “tail”

$ more mascots.txt

$ less mascots.txt

- each prints out a page of a file at a time

$ head mascots.txt

- prints out the first 10 lines by default. Can use the

–n argument to change the default number of lines

$ tail –20 mascots.txt

- prints out the last 20 lines

12/4/201954

Text editors

Good simple editors:

 pico (pine composer)

 nano (pico clone)

Advanced editors with more features:

 “vim” (vi-improved)

 “emacs” (Editor MACroS)

12/4/201955

nano – a simple editor

12/4/2019

The essentials:

 Just start typing – can use arrow keys to position,

backspace or delete key to delete characters to the left

 Keystrokes for basic commands at bottom of the screen

 ^G – help screen (^C to exit help)

 ^O – save the file

 ^W – search for a string

 ^X – exit nano

$ nano --help

$ nano filename

56

Exercise #6: Editing a file using nano

12/4/2019

$ cd /home/$USER/LinuxClass

$ nano bashrc

1) Using the RIGHT arrow key, position the cursor at the end of the first line,

2) Use the Backspace key to remove <HOMEDIRECTORY> from the first
line and then type $HOME after the colon

3) Hit Ctrl-W (to search), type NANOPATH and hit Enter – this should place
you on the last line

4) Hit Ctrl-E to get to the end of the line

5) Use the Backspace key to remove everything after the ‘=‘ sign and type
‘/bin/nano’

6) Use the up & the right arrow keys to get to the @ on the 2nd line

7) Backspace to remove <USERNAME> and type your username

8) Use the down arrow key to get to the 3rd line

9) Hit Ctrl-K to cut the 3rd line

10) Hit the Up arrow to get to the 1st line & Ctrl-A to get to the start of the line

11) Hit Ctrl-U to paste the text – the 3rd line should now be the first

12) Hit Ctrl-X to exit – type Yes to save the file when prompted and hit Enter
when prompted for the name

$ cat bashrc

57

mv - moving files/directories

12/4/2019

Syntax: mv source destination

$ touch football

$ touch footballgame

$ ls –l football*

$ mv footballgame footballtee

$ ls –l football*

$ mkdir sports

$ mv sports Sports

$ ls –ld *ports*

$ touch footballtee2

$ mv footballtee* Sports

$ ls –la Sports

58

mv - move one or more files or rename a file (some

Linux versions have a ‘rename’ command, but not all):

cp - copying files/directories

cp - copy one or more files or directories

12/4/2019

Syntax: cp source destination

$ cp football football2

$ cp –p football football3

$ ls –la football*

$ cp –p Sports/footballtee .

$ mkdir –p Sports/fall

$ cp –p football2 Sports/fall

$ cd Sports/fall

$ cp –p football2 ../football4

$ cd ..

$ ls –R Sports

Archival copy:

$ cp –a Sports Sports2017

$ cp –pr Sports Sports2018

59

Exercise #7: Moving/Copying Files

Move (mv) Copy (cp)

$ cd /home/$USER/LinuxClass

$ touch Raspberry

$ mv Raspberry raspberry

$ echo blueberry > blueberry

$ ls –la *berry

Now create a directory path using

mkdir with the –p option:

$ mkdir –p Berries/All/B

Use mv to move the blueberry file

into Berries/All/B directory:

$ mv blueberry Berries/All/B

$ touch Berries/All/B/blackberry

$ mv Berries/All/B/blackberry .

$ mv Berries BERRIES

$ ls -Rl Berries

$ ls –Rl BERRIES

$ cp raspberry strawberry

$ cp –p raspberry cranberry

$ ls –la *berry

How do the four *berry files differ?

$ mkdir –p BERRIES/Others

$ cp –p *berry BERRIES/Others

$ mv *berry BERRIES

$ ls –la BERRIES

$ cp –pr BERRIES/Others BERRIES/More

$ ls –Rla BERRIES

$ cp BERRIES NewBerries

What did you see?

$ cp –pr BERRIES NewBerries

Archival copy:

$ cp –a BERRIES Berries-save

12/4/201960

wc - what’s in that file?

“wc” (word count)

$ wc mascots.txt

345 955 7342 mascots.txt

Output shows the number of lines, words and characters in

the file

Can use argument to only get one of the three values:

$ wc –l mascots.txt

$ wc –w mascots.txt

$ wc –m mascots.txt

$ wc -help

12/4/201961

grep – pattern matching search of a file

“grep” – global/ regular expression/ print

12/4/2019

$ grep cat nonsense.txt

$ grep dog nonsense.txt

$ grep –i dog nonsense.txt # case insensitive

$ grep –v dog nonsense.txt # exclude ‘dog’

$ grep –A1 cat nonsense.txt # include line after match

$ grep –B1 cat nonsense.txt # include line after match

$ grep oc nonsense.txt

$ grep –c oc nonsense.txt # count of matching lines

$ grep ^oc nonsense.txt # ^ -starts line with oc

$ grep oc$ nonsense.txt # $ - ends line with oc

grep is a powerful tool. Use it (as well as egrep...extended grep)

$ grep --help

$ man grep

62

Exercise #8: Using grep

12/4/2019

 Make sure you are in the class directory:

 Using the ‘grep’ utility with the file mascots.txt,

determine the following:

- find the lines that have the letters ‘cat’ (just lowercase

letters) as part of the mascot name

- find the lines that have the letters ‘cat’ regardless of

case as part of the mascot name

- find which colleges that start with the word “Saint” and

redirect the output to a file named Saints – how many?

63

$ cd ~/LinuxClass

$ pwd

find – where are my darn files?

12/4/2019

 $ find [path_to_search] [expression/options]

 $ find . –name “*.txt”

 $ find /home/$USER/LinuxClass –iname “capital*”

 $ find /home/$USER/LinuxClass –type f -mmin 40

 $ find /home/$USER/LinuxClass –type f -mmin -40

 $ find /home/$USER/LinuxClass –type f -mmin +40

 $ find /home/$USER/LinuxClass –type f –mtime 1

 $ find /home/$USER/LinuxClass –name “*.bak” –delete

 $ find . –name “*.txt” –exec ls \-la {} \;

 $ man find

find - used to locate files based on various criteria

64

Exercise #9: Using find

12/4/2019

 Let’s use the find utility to look for files in your home directory

 Make sure you are in your class directory:

 Using ‘find’, locate the file named ‘colors’

 Using ‘find’, locate the files whose name contains the word
‘bear’ where the match is case insensitive (hint: -iname
option)

 Using ‘find’, locate the files that were modified LESS than 45
minutes ago (hint: -mmin option)

 How many files did you find for each?

$ cd ~/LinuxClass

$ pwd

65

uniq – show or remove duplicate lines

12/4/2019

 uniq – show either unique or duplicate consecutive

lines in a file or output. Default behavior is to merge

adjacent matching lines into one, but can be used to print

just the matching lines or provide a count of matching

lines…most effective with the sort command

$ uniq bears # will show all unique lines

$ uniq –d bears # show only duplicate lines

$ uniq –c bears # show a count of each unique line

66

Sorting

sort command

“sort” can be used to read a

file, sort the contents and

output to the terminal

$ cat grades.txt

$ sort grades.txt

$ sort –r grades.txt

$ sort -k2 grades.txt

$ sort –b -k2 grades.txt

$ sort –bn -k2 grades.txt

$ sort –bnr –k2 grades.txt

$ sort –help

12/4/201967

Pipes (redirect to other processes)

Much like you can write

output to files, you can write

or “pipe” output to other

commands using pipes “|”

$ cat college1 | sort | uniq

$ cat college2 | sort | uniq

$ cat college1 college2 | sort | uniq -c

Write to a file at the end:

$ cat college1 college2 | sort | uniq |grep ^C > Colleges

12/4/201968

Exercise #10: sort, pipes and redirection

12/4/2019

 cd /home/$USER/LinuxClass

 Look at the contents of two files, grocery1 and grocery2

(use cat command)

 Combine the two files using the cat command and then

use the sort and uniq commands to get a list of sorted,

unique items for the grocery list

 Now redirect the output to a file named grocery3

 Use the wc command to determine how many unique

items are on the list (in the grocery3 file).

 Use grep and wc to determine how many items in the

grocery3 list start with the letter ‘c’

69

Exercise #10 continued

12/4/2019

 $ cat grocery1

 $ cat grocery2

 $ cat grocery1 grocery2 | sort | uniq

 $ cat grocery1 grocery2 | sort | uniq | wc –l

You should have 32 items

 $cat grocery1 grocery2 | sort | uniq > grocery3

 $ grep ^c grocery3

7 items start with the letter c

70

Other useful commands

12/4/2019

 history – displays a history of commands which allows for

an easy way of running a command again without having to

type it out again

 alias – list aliases or create a new one for another cmd
Example:

$ alias hist=“history 20”

 cut – print out selected fields
Example:

$ cat famousdogs | cut –f1,4 –d:

 diff – find the differences between two files:

$ diff numbers1 numbers2

71

date & cal

12/4/201972

 date – prints the current date and time

$ date

Wed Sep 12 15:08:17 EDT 2018

$ date +“%D %T”

09/12/18 15:08:18

 cal – print the calendar for the current month or entire

year

$ cal 2018

Input, Output and Error

12/4/2019

 Commands can have an input and output

 STDIN or ‘standard input’ is input from the keyboard

though we can have redirected input from a file

 STDOUT or ‘standard output’ is output going to the

screen. We’ve already seen where we can ‘redirect’ the

output of a command to a file or pipe it as the input to

another command

 Commands may also produce errors such as ‘Permission

denied’

 STDERR or ‘standard error’ is error output that goes to

the screen by default

73

Input, Output and Error (cont)

12/4/2019

 STDIN, STDOUT and STDERR have handles or numbers associated
with each:

Handle
STDIN 0 Standard input
STDOUT 1 Standard output
STDERR 2 Standard error

Let’s change permissions on dogs2 to be unreadable:

$ cd $HOME/LinuxClass

$ chmod ugo-r dogs2

 Can redirect the STDERR to a file:
$ grep dog dogs* 2> errors

$ grep dog dogs* 2> /dev/null

 Can redirect BOTH the STDOUT and STDERR to a same file:
$ grep dog dogs* > out_plus_errs 2>&1

or to different files:
$ grep dog dogs* > OUTPUT 2> ERRORS

74

Putting it all together

Read in from a file with input

redirection, do some stuff and output to

another file:

$ sort < Colleges.txt | grep -i ^C > C-colleges

 Program first, then

arguments, then any

file I/O

 Most programs will

read from standard

input (stdin) if no file

is specified in

arguments

12/4/201975

awk – text manipulation

12/4/2019

 In awk, lines are split into fields by whitespace by default,

which are represented by variables $1, $2, $3, etc

 ‘print $1’ will print the first field

 Let’s look at an example:

 You do NOT have to use all of the fields – can pick and

choose as needed

$ cat hare_tortoise

The hare beat the tortoise handily.

 We can change the ordering of words using awk:

$ awk ‘{print $1,$5,$3,$4,$2,$6}’ hare_tortoise

The tortoise beat the hare handily.

76

sed – stream editor for pattern matching

and modification

12/4/2019

 In sed, one can do text pattern matching and modification

 The trailing ‘/g’ at the end of that command indicates that the
change is to be done globally…without it, only the first occurrence
of the word in the file will be changed.

$ cat hare_tortoise

The hare beat my tortoise handily.

 If we want to change the word ‘beat’ with the word ‘defeated’:

$ sed ‘s/beat/defeated/g’ hare_tortoise

The hare defeated the tortoise handily.

 We can use both awk & sed on the same command line:

$ awk ‘{print $1,$5,$3,$4,$2,$6}’ hare_tortoise |

sed ‘s/beat/defeated/g’

The tortoise defeated the hare handily.

77

tr – allows character substitution or

translation

$ echo ‘Let’s Go Caps!!!’ | tr “a-z” “A-Z”

LET’S GO CAPS!!!

12/4/2019

 With tr, characters can used to translated – perhaps to

change the case of letters:

78

 Or to replace a new line character (\n) with a space or

comma:

$ cat numbers2 | tr “\n” “ ”

1 2 3 4 5 6 7 8

$ cat jobs

$ cat jobs|awk ‘{print $1}’|tr “\n” “,”

More Linux Command Basics…Quotes

12/4/2019

 Linux treats single, double and back quotes in commands differently

 Contents of a set of single quotes are treated as a string:

 Contents of a set of back quotes or back ticks (on the upper
left of the keyboard) are treated as a command and the output
can be assigned to a variable:

 Contents of a set of double quotes will have any included

variables replaced:

$ echo ‘$USER’

$USER

$ echo “The home directory of $USER is $HOME”

The home directory of username is /home/username

$ NOW=`date`; echo $NOW

Mon Jul 30 15:08:56 EDT 2018
79

Your PATH

Execution path

In BASH, execution of a

program happens when you

enter the program name. Your

PATH variable keeps you from

having to enter the full path to

the program

Modifying your PATH

$ echo $PATH

$ which date

$ which whoami

$ which perl

$ echo $PATH

$ PATH=$PATH:/data/$USER

$ echo $PATH

To path changes permanent, need

to modify the .bashrc file in

your home directory.

12/4/201980

Shell Variables

Variable assignment From a file

Arbitrary assignment

$ MYWORLD=“Hello World”

$ echo $MYWORLD

$ MY_PI=3.14

$ echo $MY_PI

With program output
$ RIGHTNOW=`date`

$ echo $RIGHTNOW

Mon Jul 30 15:08:56 EDT 2018

$ FILE=`cat jobs`

$ echo $FILE

$ echo $FILE | awk \

‘{print $1}’|sort | uniq

12/4/201981

Shell Variables

Show all currently assigned

variables
Useful predefined and
important variables

$ printenv

HOSTNAME=biowulf.nih.gov

TERM=xterm

SHELL=/bin/bash

HISTSIZE=500

SSH_CLIENT=165.112.93.227

49886 22

OLDPWD=/home/mark

HISTFILESIZE=500

USER=mark

…

 $HOSTNAME System hostname

 $USER Your Username

 $SHELL Your shell

 $HOME Home directory

 $PWD Current directory

 $PATH Command paths

12/4/201982

Loops

“For” loops allow for iteration

based on flow control criteria
Perform math using the seq
command:

$ for n in 1 2 3 4 5 6 7

> do

> echo The value of n is $n

> done

$ for n in {1..7}

> do

> echo The value of n is $n

> done

$ for n in `cat Capitals`

> do

> echo $n|tr “a-z” “A-Z”

> done

$ seq 1 10

$ t=0

$ for n in `seq 1 10`; do

> t=`expr $t + $n`

> echo $t

> done

$ echo $t

55

$ t=1

$ for n in `seq 1 10`; do

> t=`expr $t * $n`

> done

12/4/201983

Loops, part 2

Let’s combine contents of many named files into one

$ cd /home/$USER/LinuxClass/loops

$ cat nih1

.

.

$ cat nih9

We can combine the contents of the 9 nih named files into

one using a loop:

$ for i in `seq 1 9`

> do cat nih$i >> NIH-ALL

> done

$ cat NIH-ALL

12/4/201984

Logic tests

Equality: if, then, else, fi Existence

$ TRUE=“good”

$ if [“$TRUE” = “good”]

> then

> echo “it’s true”

> fi

$ if [“$TRUE” = “no good”]

> then

> echo “true statement”

> else

> echo “false statement”

> fi

$ if [-e $HOME/.bashrc]

> then

> echo true

> fi

$ if [-d $HOME/LinuxClass]

> then

> echo true

> fi

12/4/201985

File Transfer

SCP, SFTP and clients Clients

 SCP and SFTP are file

transfer protocols that

run over SSH, the same

protocol that you used to

log in

 They are very secure and

encrypt both the log-in

and content of any

transfer

Linux/MacOS:

 “scp” secure copy

 “sftp” secure FTP

 “fuze-ssh” (Linux only)

Windows:

 WinSCP

 Filezilla

 Swish

12/4/201986

WinSCP

• Start WinSCP

• Click “New”

• Enter the host name

(i.e.: helix.nih.gov)

• Fill in user name

• Leave password blank

• Click Login

• If this is the first time

you’ve connected to this

host, you’ll have to

accept the host’s key

12/4/201987

WinSCP Interface

• Left window is your

local workstation, right

window is the remote

host

• Drag and drop files

• Navigate like a

traditional explorer

interface

12/4/201988

Using OpenSSH (Unix/Linux/MacOS)

SCP files via command

line:

Using SFTP

Transfer a file:
$ scp helix.nih.gov:/tmp/file ~

Recursive transfer (whole directory)
$ scp –r helix.nih.gov:/tmp/dir ~

Preserve time stamps of the file
being transferred:
$ scp –p helix.nih.gov:/tmp/file ~

From local host to remote.
$ scp ~/file helix.nih.gov:/tmp/

As usual
$ scp --help

$ man scp

$ sftp helix.nih.gov

sftp> cd /tmp

sftp> get file

Fetching /tmp/file to file

/tmp/file 100% 2048KB 2.0MB/s 00:00

sftp> put file newfile

Uploading file to /tmp/file

file 100% 2048KB 2.0MB/s 00:00

sftp> exit

$ man sftp

12/4/201989

File Transfer via HPCdrive

Network drive (Windows) Network Drive (MacOS)

HPCdrive is available to users

with NIH HPC (Helix/Biowulf)

accounts:

 Open “Computer” from the

start menu

 Click “Map Network Drive”

 Folder:

hpcdrive.nih.gov/username

 Click Finish

 If prompted, enter NIH

username and password

 Menu Bar -> Go -> Connect to

Server

 Server Address:

smb://hpcdrive.nih.gov/usern

ame

 Click “Connect”

 Check “Registered User”

 If prompted, enter NIH

username and password

12/4/201990

Globus

12/4/2019

 Globus is a service that allows one to transfer large amounts of data

in & out of systems. It will manage the file transfers, monitor

performance, retry failures, recover from faults automatically when

possible, and report the status of your data transfer.

 Requires an endpoint at source & destination. You can install Globus

Connect on your local Windows, Mac or Linux system to create

personal endpoint. NIH users can authenticate using their NIH

username & password.

 The HPC (Biowulf/Helix) endpoint is nihhpc#globus. More

information regarding Globus can be found at:

https://hpc.nih.gov/storage/globus.html

91

Exercise #11: Using scp

12/4/2019

 Type ‘exit’ to log off from Helix and get back to your local
system:

$ exit

 Use scp to copy the file read-write.txt from Helix to your local
system – NOTE the trailing space & period in each
command!

$ scp username@helix.nih.gov:/data/classes/linux/read-write.txt .

 Now copy a whole directory:

$ scp -pr username@helix.nih.gov:/data/classes/linux/examples .

 Reconnect to helix via ssh once the file transfer has been completed

92

Processes

Show processes

Show your processes:
$ ps

$ ps –f

sleep is a delay or pause for specified number of seconds
$ sleep 5

$ sleep 25 &

$ ps -f

$ ps –f --forest

Show all processes:
$ ps –e

$ ps –ef --forest

$ man ps

12/4/201993

More on Processes

12/4/2019

 ctrl-z suspends a running job/process

 bg allows you to resume a suspended job in the background and returns
you to the command prompt

 fg allows you to resume a suspended job in the foreground until it
completes

 ctrl-c interrupts or kills the currently running process

 Warning: Backgrounded processes will die when you log out of
your session unless you use something like nohup or screen.

Background and Foreground processes

 A command/job can be run in the background by adding ‘&’
to end of the command:

$ sleep 50 &

[1]+ Done sleep 50

94

More on Processes

Detach and Reattach

processes

Killing a process

Ctrl-z suspends an active

job

$ sleep 300

[ctrl–z] (process is suspended)

$ bg

$ ps –f

$ fg

$ sleep 300

[ctrl-Z]

$ bg

$ ps

PID TTY TIME CMD

6686 pts/0 00:00:03 bash

8298 pts/0 00:00:00 sleep

8299 pts/0 00:00:00 ps

(find the PID of the process you want

to kill)

$ kill 8298

12/4/201995

Processes: kill them

“kill” only requests that

the program exit. Use a

signal 9 to force it to exit

$ sleep 300

[ctrl-Z]

$ ps

PID TTY TIME CMD

6686 pts/0 00:00:03 bash

8298 pts/0 00:00:00 sleep

8299 pts/0 00:00:00 ps

(find the PID of the process you want to kill)

$ kill -9 8298

 The kill command is
slightly misnamed,
what it actually does is
send a signal to a
process

 Most signals are
interpreted by the
application being
signaled and thus
behavior is consistent
only by convention

 Using signal 9 is
dangerous if used
indiscriminately

12/4/201996

Exercise #12: Using ‘kill’ on a process

12/4/2019

 First start a ‘sleep’ process that will run in the background for 300
seconds:

$ sleep 300

 Type ‘Ctrl-z’ (the Ctrl and z keys together) to suspend the ‘sleep’
process

 Type ‘bg’ to unsuspend the ‘sleep’ process and have it run in the
background.

 Check that the process is running by using the ‘ps’ command and
note the pid, process identification number

 Using the ‘kill’ command with the pid of the sleep process from the
previous step, terminate the sleep process

 How can you check that the sleep process is gone?

97

uptime

12/4/2019

 Numbers shown from left to right:

- Current time

- Amount of the time the system has been up

- Number of users currently logged on

- The average system load for the past 1, 5 and 15
minutes

- The load is the usage of the system’s CPUs – a load of
1 corresponds to a full load of 1CPU

 uptime shows a summary of the system status

$ uptime

14:39:46 up 14 days, 7:00, 305 users, load average: 39.18, 40.68, 38.68

98

Who is doing what…using top

By default, top will produce continuous output about

running processes

$ top

top - 16:19:54 up 28 days, 9:07, 255 users, load average: 32.18, 32.79, 33.22

Tasks: 4749 total, 8 running, 4733 sleeping, 7 stopped, 1 zombie

Cpu(s): 9.6%us, 5.8%sy, 6.0%ni, 78.2%id, 0.2%wa, 0.0%hi, 0.2%si, 0.0%st

Mem: 1058656848k total, 955041356k used, 103615492k free, 79064k buffers

Swap: 67108856k total, 547376k used, 66561480k free, 89619996k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

120202 johanesb 39 19 235m 180m 1432 R 96.4 0.0 170:21.86 merlin

252158 liqingli 39 19 58496 26m 756 S 95.0 0.0 17141:15 moe

170176 bozser 33 13 407m 117m 2588 S 60.1 0.0 62:30.33 ascp

218983 jrussler 20 0 18532 4704 872 R 22.3 0.0 0:00.38 top

127988 elliottm 39 19 223m 3544 1064 S 16.8 0.0 782:02.42 sshd

198816 wenxiao 20 0 4280 792 416 D 14.0 0.0 24:50.19 gzip

12/4/2019

Hit ‘q’ to quit out of top

99

Looking at file system (disk) Space

To see local file system space:

$ df –l

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/mapper/vg_helix-root

51403396 8502228 40289968 18% /

tmpfs 529355640 2216 529353424 1% /dev/shm

/dev/sda2 495844 180879 289365 39% /boot

/dev/sda1 204580 33228 171352 17% /boot/efi

/dev/mapper/vg_helix-tmp

51606140 973788 48010912 2% /tmp

/dev/mapper/vg_helix-var

32253856 19349996 11265460 64% /var

To see numbers in human readable format:

$ df –lh

Filesystem Size Used Avail Use% Mounted on

/dev/mapper/vg_helix-lv_root

50G 8.9G 38G 19% /

tmpfs 505G 5.6M 505G 1% /dev/shm

/dev/sda2 485M 142M 318M 31% /boot

/dev/sda1 200M 256K 200M 1% /boot/efi

/dev/mapper/vg_helix-lv_tmp

50G 613M 47G 2% /tmp

All filesystems, including network file systems:

$ df –h

12/4/2019100

Directory size

Estimate file space use (du)

$ cd /home/$USER

Estimate a file size:

$ du LinuxClass/Linux_slides.pdf

Summary:

$ du -s LinuxClass

Summary in human-readable format:

$ du -sh LinuxClass

Default behavior:

$ du

12/4/2019101

Checking Quotas on Helix/Biowulf

“checkquota”

 The checkquota command will query all network storage
devices to find the applicable quota(s) for your user

 This command is specific to Helix and Biowulf and is not
available to Linux in general since it relies on information that
is site-specific to this infrastructure.

$ checkquota

Mount Used Quota Percent Files

/data: 94.2 GB 200.0 GB 47.12% 70424

/home: 5.2 GB 16.0 GB 32.50% 133607

12/4/2019102

tar & gzip

12/4/2019103

 The tar command allow users to compress and archive files – does not remove the
original files by default

Syntax for tar to create an archive:

$ tar –czvf <output file> <files to be archived>

where c is to create

z is to compress using gzip

v is verbose output (lists files as they are tar’d)

f indicates that the next argument is the output filename

Syntax to extract files from an archive:

$ tar –xzvf <filename>

Syntax to list the files in a tar file:

$ tar –tzvf tarfile.tar.gz

 The gzip command is similar, but the original file is removed unless you specify to
keep it with the ‘-c’ option.

 Example:

$ gzip files.gz

Cron

Cron: run a job whenever you want

 crontab -l

 crontab –e

--

15 3 * * * ~/script.sh >> ~/output 2> ~/error.log—

Runs “script.sh” at 3:15AM every day of every week of

every month of every year.

* * * * *

 First number is the minute at which to run (0-59)

 Second is the hour (0-23)

 Third is the day of the month (1-31)

 Fourth is the month (1-12)

 Fifth is the day of the week (0-6), 0 is Sunday

12/4/2019104

Review

12/4/2019

 History – Linux Torvalds, 1991

 Why Linux? Performance, functionality and portability
 Bash shell & shell variables

 Files and directories – permissions & ownership

 Linux file system

 Paths to files/directories

 Basic Linux commands to create & access files & directories

 nano editor

 sort, grep & find

 pipe & file redirection

 awk, sed, & tr text manipulation utilities

 transferring data to & from a Linux system

 processes

 cron

105

Resources

 Linux Documentation Project: http://www.tldp.org
 Introduction to Linux - A Hands on Guide:

http://www.tldp.org/LDP/intro-linux/html/index.html

 Bash Guide for Beginners:

https://www.tldp.org/LDP/Bash-Beginners-Guide/html/

 Linux Tutorial at the Texas Advanced Computing Center (TACC):

https://portal.tacc.utexas.edu/-/linux-unix-basics-for-

hpc

 NIH HPC Web Site: https://hpc.nih.gov/training

12/4/2019106

http://www.tldp.org/LDP/intro-linux/html/index.html
https://www.tldp.org/LDP/Bash-Beginners-Guide/html/
https://hpc.nih.gov/training

12/4/2019107

Questions? Comments?

staff@hpc.nih.gov

