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Outline:

Brief introduction to single cell why and how

Evolution of single cell methods and some biological answers using those methods
Add-on modalities to scRNA-Seq (VDJ and feature barcoding)

Sample preparation methods and considerations

Concerns of batch effects and experimental design considerations

Analysis tools for multiple experience levels

Single cell sequencing is now part of the standard repertoire of biological research techniques
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« Survey cells present in a biological system and identify gene signatures associated with cell types
« Compare cell number and/or phenotypic differences between conditions (i.e. healthy vs disease)
« Model dynamic changes representing biological processes

» Interrogate potential mechanisms at cellular resolution in health and disease



Generalized workflow of generating single cell

RNA-Seq data

Single Cell RNA Sequencing Workflow
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https://hemberg-lab.github.io/scRNA.seq.course/
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Partition single cells
Convert mMRNA into cDNA
Amplify cDNA

Generate sequencing
library

Sequence

Data analysis with
identification of what
transcripts are expressed
by each cell profiled
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The evolution of single cell to higher
throughput methods



Single cell sequencing has become easier and

ability of cells per sample number has increased

Integrated Fluidic

Manual Multiplexing

Liquid Handling

Nanodroplets Picowells In situ barcoding
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transcriptome single
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Circuits Robotics manually picking of
. = 3 (| ’ - cells (2009)
V4 ‘ \? <R ey A . i
Tang et al 2009 Islametal 2011 Brennecke et al 2013 Jaitin et al 2014 Klein etal 2015 Bose etal 2015 Caoetal 2017 ¢ More Wldely adopted In
Macosko etal 2015 Rosenberg et al 2017 2012/2013 With Fluidigm
B 900000 C1 platform and
2> Drop-seq 10x Genomics o ¢p|iT-seq SMARTer chemistry
3 100,000 CytoSeq ~ © mDrop Q@ sci-RNA-seq . .
2 10,000 MARS-Seq 0 o% @ D DroNC-seq - Huge increase in
@« 1,000 Q o SeaWell throughput with droplet
= ' STRT-Seq CELseq UM P o Q> h in 201
> 100 Tang etal o o o0© @Q based methods in 2015
£ ; Tang etal €q . .
N © « Third generation of
- . - ' = = = methods may see
Sk S X X X S oK S X additional increase in
3 3 3 e 3 3 0> 9" 0

throughput / decrease in
cost (sciRNA-Seq /
SPLIiT-Seq / Seq-Well)
~2017/2018

Study Publication Date

Svensson et al. 2018



Profiling unique cells types in the mouse cochlea with Nattona"

National

H o g° . . Laboratory
single cell RNA-Seq - Fluidigm’s C1 makes it accessible

sponsored by the
National Cancer Institute

Hensen &

Cladius Cells .
| Dieter’s Cell

(3 Row)

Border Ce

Il
N

of Corti Outer Hair Cell
L (3 Row)

/

Inner Phalangeal Cell Dieter's Cell D;;:(:r';so&()ell
Inner Hair Col Outer Pillar Cell (1 Row)
Outer Hair Cell  Outer Hair Cell
Inner Pillar Cell (1% Row) (2" Row)

Medial =—Lateral




Frederick
Fluidigim C1 - Cells are captured and imaged on ﬁgg@gﬂry
the microfluidic chip before Lysis, RT and PCR

for Cancer Research




Frederick

SMART-Seq — full length cDNA generated with template switching National
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P1 single cell transcriptional analysis shows distinct {H
profiles of cochlear hair cells and supporting cells .
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Burns & Kelly et al. Nat Comm 2015
Work done as a fellow in Kelley lab (NIDCD)
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with unprecedented ease (for good samples)
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FACs-enrichment of limited target cells to assay National
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Plate-based sc-Seq still has its utility and can be readily o
implemented with FACs capable of plate-sorting
FACSsorFer
g —— * Cells sorted directly into lysis in plates (no time for
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_ level analysis possible)

| SMART-seq |
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* |n general, greater gene detection sensitivity expected

* Higher cost per cell than droplet-based methods

Vlndividual cell amplification

* Generally more hands-on time for processing libraries
P 3] (depending on sample pooling stage)

Full-length sequencing

}

| Detect gene expression,
splicing variants and BCR
| and TCR repertoire diversity

Nature Reviews | Inmunology

Papalexi & Satija (2018)
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Index sorting — keep track
of phenotypic parameters
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Higher throughput than droplet-based single cell?

Microwell barcoding

Million Microwell Device

Load ~200 K suspended cells
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e Collect all beads
e RT, PCR & library
e Sequencing & analysis

https://www.tebu-bio.com/
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Beyond single cell RNA-Seq (scRNA-Seq+)
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Gene Expression Profiling & Add-on modalities (scRNA-Seq+)

e scRNA-Seq gene expression profiling
e VDJ sequencing for TCR or BCR expression

e Cell surface protein measurements with barcode-conjugated antibodies

Expressed barcodes to track clonal relationships

e Functional genomics with CRISPR-based perturbations

Chromatin accessibility
e scATAC-Seq

Genomic structural variation

e scCNV




Frederick

Number of accessible modalities available to National

Laboratory

interrogate at single cell resolution has increased e e

National Cancer Institute

Gene Expression Profiling & Add-on modalities (scRNA-Seq+)

e scRNA-Seq gene expression profiling
e VDJ sequencing for TCR or BCR expression

e Cell surface protein measurements with barcode-conjugated antibodies



5’ end barcoding single cell allows gene expression and VDJ

(T-cell and B-cell receptor) sequencing from the same cells
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Specific target genes can be amplified from the single cell Ere::’;igr?a:i
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cDNA library and sequenced - linked by cell barcodes e
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in parallel to gene expression profiling e
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scCRNA-Seq capture input of a high viability cell National
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e 10X Genomics

] ] i recommends
Single Cell Suspension for Optimal Performance loading 90% viable
cells or higher
10x Genomics® Single Cell Protocols require a suspension of viable single cells as input. Minimizing the Often the
presence of cellular aggregates, dead cells, non-cellular nucleic acids and potential inhibitors of reverse underlying causes
transcription is critical to obtaining high quality data. of below target # of
cells
. e Can contribute a
1.3. Factors Influencing Cell Recovery “background
signal” — ambient
To recover the expected number of cells, it is critical to maximize viability, minimize the cell preparation RNA

time, accurately measure the input cell concentration and pipette the correct volume into each reaction.

Ideally, input cell suspensions should contain more than 90% viable cells. Non-viable and dying cells
generally contain less and more fragmented RNA that may not be efficiently captured by 10x Genomics
Single Cell Solutions. The presence of a high fraction of non-viable cells in the input suspension may
therefore decrease the apparent efficiency of cell partitioning and recovery. ® o000 (Y 30

Cells 0Oil
Enzyme



Effects of low cell viability and ways to improve

you input population
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Any preparation / purification step has the Nattonai"
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potential to change or bias you single cell assays e
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* Removal of dead cells may preferentially remove certain cell types i
(more fragile) — important to know cell composition of tissue
 FACs enrichment is powerful and allows targeting cell types of Brose
interest, but may increase cell stress / decrease RNA content
» Even standard cell preps (PBMC extraction from whole blood) can Teals
drastically bias cell type representation in datasets :
« What effect does the dissociation protocol have on the physiological T A

. . ) Debris Basophils
state of cells in the tissue” Brodin ot al (2019)
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Mean transcript count over all cells (log,)
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Are you profiling normal biology or the effect of tissue e
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dissociation in your scRNA-Seq study? T
d
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van den Brink et al Nat Methods 2017 PMID 28960196

o Effects of dissociation and / or sorting and enrichment may have a significant effect on transcriptional state of a cell
e How far from the biologically relevant transcriptional profile are we?

 Some methods may help reduce this effect (single nuclei profiling, fixed cells, actinomysin D, cold-active protease, etc.)
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whole single cell RNA-Seq — still a powerful technique
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Habib et al 2017 Nature Methods “DroNc-seq”

Single nuclei have less RNA content (also may be less accessible), and RNA has more
introns — still appears to be representative and good for cell type identifications
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Advantages of single nuclei

Fast and relatively easy to extract

Option for difficult-to-dissociate tissues (highly intercalated cells, strongly-adherent cells, fragile cells, or
from solid fresh-frozen samples)

May be more agnostic to variability in selection bias — better survey of cell types?

Transcriptional artifacts of dissociation can be largely avoided

Caveats of single nuclei

Lower RNA content

Higher proportion of introns retained in transcripts

Largely not compatible with barcoded antibody technology (more later)
Some optimization may be required for each tissue

Less ability to quality control input sample (low viability cells may still have nuclei, but little RNA)
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Preparing for batch effects



|. Tissue Procurement

Source: Key considerations: Study design:

- Primary human - Biological variation - Biological replicates

- Model organism - Sampling/handling variation - Technical replicates

- Cell culture - Duration of sourcing - Cell number calculation

- Workflow optimization
Il. Tissue Dissociation v
@ @@ Method: Key considerations: Quality control:
@@ B - Mechanical mincing - Experimental consistency - FACS analysis

0 -
Q»@ < - Enzymatic digestion - Shortest duration - gPCR for marker genes
@0 *®@ -Automated blending - Highest cell/nucleus quality - Imaging of cell integrity

[0 - Microfluidics devices - Representation of all cell types - RNA quality (RIN)
lll. Cell Enrichment (optional)
® Method: Key gqnsideratior]s.'
@ ®  _Differential centrifugation, sedimentation, filtration - Additional handling
@ @ @ _ antibody labeling for positive/negative selection - Longer duration

- Loss of RNA quality

[©)] @@ - Flow cytometry or bead-based enrichment
® - Transcriptome changes

- Dead cell removal

IV. Single Cell RNAseq Platform
Method: Key considerations:
J - Droplet-based - Cell throughput and handling time
geeadw - Tube-based after FACS - Gene coverage and cell type detection
Tf - Microwell-based - Whole transcript versus 3’end counting
- - Microfluidics-enabled - Imaging capability for doublet detection

V. Library Sequencing
SIS Method: Sequencing depth considerations:
%"&vﬁ: >

- 3’end counting: low depth ~50K RPC

S55%% - llumina NGS J: low

% @1&5 - Compatible with cDNA library - Whole transcript: high depth ~1M RPC
l&v S - Alternative splicing: ~20-30M RPC
RSS2 - Iterative optimization for biological system

VI. Computational Analysis
Key considerations: Sample Batch correction approaches:
- Separation of batch and condition - Cell Hashing

% - Technical vs. biological variation - Demuxiet _ )
- Canonical correlation analysis (CCA)

- MAST

Nguyen et al., 2018
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are what we are looking for; some are unintended

Some general thoughts on variation single cell:

Inaccuracy in biological measurements have always been a part of
biological science

Biological and technical replicates are helpful, but there can be
practical limitations (sample access, cost, etc.)

Being able to attribute variation to biological or technical aspects of
experiment can increase sensitivity to biological signal

Managing variation across larger studies (particularly human patient
longitudinal studies) can be particularly challenging

Over-correction of ‘batch effects’ may be just as detrimental to the
dataset / conclusions — don’t smooth out the biological signal you set
out to find

Standard exogenous RNA spike-ins are generally not useful in high-
throughput scRNA-Seq (such as droplet-based scRNA-Seq)
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Most data alignment tools are aided (or require) Ntional
. e aboratory
for Cancer Research
shared cell identities between groups e
" : B @ e Samples that inherently have shared cell types between
Principle of L Y * nyo1d datasets work well
mutual nearest ‘ &8, L ”,
neighbor T i =  Even “contaminating cells” in a dataset can help
alignment vS 7 g WY owm
N .’;", - oY ¥ ,;‘:. :I‘;‘j:’:: ’
g o * Some groups are adding exogenous cells as cellular “spike-
b ins” for checking or adjusting data alignment
x ’ * Suggestions from NCI CCR Collaborative Bioinformatics Group
| _&Li‘_ = b * If considering, use ‘spike-ins’ cautiously — important to not
o introduce additional perturbations into the biological
., o system being studied & some reads will go to ‘spike-ins’
d
Spiked-in cell line /:’*\\\ " aackarous
" >
Target primary cells /
W vy ‘ . yly lg

1 10 100 1000 10k 100k

Haghverdi et al 2018 Barcodes
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Benefits of Sample Multiplexing:

o,
) |
AAAAAA () o®
.. ° cC oo
% * / .,. : ...
| S— « %
Cell pooling Library preparation, Analysis & ... e <

Samples habﬁ{ Withl' & sequencing demultiplexing
ashtag oligos
(HTO) ~

A X N . . * Reduce technical variation
@ N % AAAAA * Reduce cost (compared to multiple capture lanes)
* Increase detection of doublets
@ > % > }% .:;.:. 3. / . Incrgas? number of cells in capture lanes (‘super-
/ W [ loading’)
N

Considerations of Sample Multiplexing:

B C ron -. 5  What happens if you can’t resolve barcodes?
_ o5 i HTO B | e Extra sample handling & time
. AB dc'xublet HTOC g - .
i . e HTOD II * Need more cells because cells are lost during
A B (o4

HTO B

0 1000 2000 3000 4000 5000 6000
1 1

HTOE post-staining washing steps

HTOF

|| S HTO G * Surface protein-based barcoded antibodies not
— HTOH I compatible with single nuclei preps
0 1000 2000 3000 4000 5000 D E F G H ¢ <

HTOA HTO classification @‘\Q egq””

Note: Both Seurat v3 and FlowJo-SeqGeq have methods for
handling cell hashing features
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Feature barcoding for sample multiplexing with National
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gene expression profiling e
Gene Expression tSNE Gene Expression tSNE tSNE Projection from Antibody Labels Counts
(color = graph-based clusters) (color = hashed blolpglcal replicate)

S

Unassigned

Gene Expression tSNE
(Split by Biological Replicate)

Data generated by SCAF in support of Soumen Roy
(Giorgio Trinchieri’s Lab)
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Accessible analysis tools



Commercial Software for scRNA-Seq Analysis

Loupe Cell Browser
(free from 10x Genomics)

e Most straightforward, but still
relatively powerful

* Interrogate data for specific gene
expression, and run custom
differential gene expression

e Only takes data from 10x
Genomics platform

e Limited in re-analysis that can be
done

[ JON ] Loupe Cell Browser 3.0.1 - AMLTutorial

Frederick
National
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t-SNE v ‘ I Categories

Cluster
Cluster 2 (627
Cluster 3 (¢08
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3
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Cluster 5 (555
Cluster 6 (544
Cluster 7 (5
Cluster 8 (46

Cluster 9 (445

Cluster 11 (403)

Cluster 12 (390)
Cluster 13 (349)
Cluster 14 (360)
Cluster 15 (333)

Significant Feature Comparison

Graph-Based v i
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Partek Flow Single Cell
(14-day free trial available)

e Relatively intuitive workflow. Control of
various parameters

e Somewhat familiar for previous users of
Partek Flow

e Some advanced secondary analysis
currently limited

®ec00eenoe

* Hosted on the NIH HPC systems
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Al 2 m

| Analyze | Genes Workspace Edit

FlowlJo SeqGeq not L S @ %

Add Add from Layout references... Dimensionality DownSample DRP Vector
Samples... Basespace Editor Reduction Inspector

(60-day free trial available)

Cell View

e Familiar to those who have used Flowlo

e Some "gating” and workflows similar to gggsa
FACs analysis

e Still need to learn order of steps (some
reading in FlowJo University or a training) e

¢ 6K_PBMC.csv

e Some powerful add-in’s available — batch
correction, trajectory analysis, various
visualization tools

e Integration of VDJ & CITE-Seq




The advantages of R (Rstudio)

Efficient analysis

Full control of analysis
parameters

Decent documentation for
dominant analysis packages
(Seurat, Monocle, etc.)

Most update to date innovative
analysis tools

Does have a learning curve; but
you can use these tool far beyond
just sc-Seq analysis

Can easily run R on Biowulf,
including with GUI using
NoMachine — especially helpful
for large datasets that require
large memory usage

Frederick
National
Laboratory

for Cancer Research

sponsored by the
National Cancer Institute

£ RrStudio S [=] B3

File E
P BRI

Code View Plots Session Build Debug Profile Tools Help

A Gotofil

Console  Terminal

$ BoxPlot
column
1 Totalgl

B - addins -

Environment.

Hi Min
4943 572 13801 1

TotalSaleValue

ﬂ Project: (None) «

History ~ Connections
™ | B ImportDataset ~ |

Global Environment «

5301 o
Formal «
List of 1

NULL,
NULL,
NULL,
NULL .

function
function
.. function
function
Viewer

o | Publish ~

Plots Packages Help
2 Zoom | #8 Export ~

2000000~

500000 -

CIA HIU o] Swy 'w!\.:‘h
Township
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Some useful resources
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Hemberg Lab Online, Single Cell Self-Paced “Course”

— https://scrnaseq-course.coqg.sanger.ac.uk/website/index.html|

10X Genomics Demonstrated Protocols, Videos and Datasets
— https://support.10xgenomics.com/single-cell-gene-expression

Sean Davis’s “Awesome Single Cell” Page — collection of analysis tools, database
collections, papers and other resources

— https://github.com/seandavi/awesome-single-cell

NIH Single Cell Genomics Scientific Interest Group & User Group — seminars, invited
speakers, discussion groups

— https://nih-irp-singlecell.github.io
Many NIH Institutes have core facilities that can support single cell sequencing



https://scrnaseq-course.cog.sanger.ac.uk/website/index.html
https://support.10xgenomics.com/single-cell-gene-expression
https://github.com/seandavi/awesome-single-cell
https://nih-irp-singlecell.github.io/
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e 10x Genomics
— 3’ Gene Expression Datasets (including Surface Protein Feature Barcodes):

https://support.10xgenomics.com/single-cell-gene-expression/datasets

e Human, Mouse, and species-mixed

e PBMCs, Tumor, T-cells, Brain (whole cell, nuclei, and methanol-fixed)

— 5’ Gene Expression with TCR / BCR (and with Feature Barcodes):

https://support.10xgenomics.com/single-cell-vdj/datasets

e Human and Mouse

e BROAD Single Cell Portal
— https://portals.broadinstitute.org/single cell



https://support.10xgenomics.com/single-cell-gene-expression/datasets
https://support.10xgenomics.com/single-cell-vdj/datasets
https://portals.broadinstitute.org/single_cell
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e 10x Genomics Demonstrated Protocols

— For various tissue types

— If running scATAC-Seq, important to start with their protocols and buffers

. jove C oy - )
* JOVE (from Levine Lab — NINDS)
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Single cell sequencing is now accessible for many labs and research goals

Important to choose the right sample preparation method for best data

Multiple modalities can now be collected alongside RNA-Seq data

Experimental design can be aided by sample multiplexing techniques

Relatively user-friendly analysis tools can make complex data types accessible for individuals
with varying degrees of comfort with bioinformatics
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Thank you for...

* Providing fast & reliable computational resources

Extensive package and software support, with timely and responsive updates

Constantly improving resources, speeds, and connections

Fostering a great environment of learning and support
— User guides, software support pages, and direct one-on-one support

— Allows trial and error without cloud core-hour charges — great for learning and for setting
up new methods

Being truly invested partners in cutting-edge science

Remember to acknowledge use of HPC systems in your publications!

This work utilized the computational resources of the NIH HPC Biowulf cluster.
(http://hpc.nih.gov)
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* NCI-CCR SCAF Team Laboratory of Cochlear Development (NIDCD)

— Zach Rae — Matt Kelley (PI), Joe Burns, Betsy Driver,

— Maria Hernandez, PhD Weise Chang, Joseph Mays

— Allison Ruchinskas

_ Kimia (Ezzat) Dadkhah, PhD NIDCD Genomics and Computational Biology Core

— Rob Morell & Erich Boger

* Frederick National Lab CRTP Genomics
Groups & ABCS Collaborators

— Sequencing FaC|||ty & SF-IFX — Levine lab (NINDS), Friedman lab (NIDCD),

— Genomic Technology Lab Banfi lab (Univ of lowa), Hertzano lab (UMBC)

NCI-CCR Leadership, Investigators, and Staff & Trainees

 Other CCR Cores * Investigators that we’ve worked using these technologies
— BId 37 Genomics Core
_ CCBR NIH Single Cell Community
_ Collaborative Protein Group * https://nih-irp-singlecell.github.io

— Bld 37 Flow Cytometry Core Analysis Package Developers


https://nih-irp-singlecell.github.io/
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A reminder that an extended downtime of the Biowulf Cluster will start this Thursday July 25 at 7 am and last until Monday July 29 at 10 pm. A node

reservation is in effect leading up to the maintenance window which prevents any HPC cluster jobs being scheduled that would overlap with
the downtime period. Any running jobs will be terminated this Thursday at 7 am.

During this five day maintenance window all HPC services including the following will be unavailable to users:
- Biowulf login node & cluster

- Helix

- Helixdrive

- Mascot

- Sciware

In addition, the HPC Globus endpoint will be unavailable.

As the next step in the expansion of the NIH HPC cluster, this extended downtime will allow for the recabling of the HPCnetwork fabric to support additional
compute nodes and storage as well as allow for the upgrading of the HPC storage systems.

Thank you for your patience as we continue to grow our computing resources.

HEHHHHHHHEHHEHHE
Please contact staff@hpc.nih.gov with any questions about the NIH HPC Systems
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