Single-particle processing in RELION-3.0

Sjors H.W. Scheres
(ccpem@jiscmail.ac.uk)

October 2, 2018

Abstract

This tutorial provides an introduction to the use of RELION-3.0 for
cryo-EM structure determination. This tutorial covers the entire single-
particle analysis workflow in RELION-3.0: beam-induced motion-correction,
CTF estimation; automated particle picking; particle extraction; 2D class
averaging; SGD-based initial model generation; 3D classification; high-
resolution 3D refinement; CTF refinement and beamtilt estimation; the
processing of movies from direct-electron detectors; and final map sharp-
ening and local-resolution estimation. Carefully going through this tu-
torial should take less than a day (if you have a suitable GPU or if you
follow our precalculated results). After that, you should be able to run
RELION on your own data.

This tutorial uses a test data set on beta-galactosidase that was given
to us by Takayuki Kato from the Namba group at Osaka university, Japan.
It was collected on a 200kV JEOL cryo-ARM microscope. The data and
our precalculated results may be downloaded and unpacked using the
commands below. The full data set is also available at EMPIAR-10204.

wget ftp://ftp.mrc-lmb.cam.ac.uk/pub/scheres/relion30_tutorial_data.tar

wget ftp://ftp.mrc-1lmb.cam.ac.uk/pub/scheres/relion30_tutorial_precalculated_results.tar.gz
tar -xf relion30_tutorial_data.tar

tar -zxf relion30_tutorial_precalculated_results.tar.gz

If you have any questions about RELION, first read this entire docu-
ment, check the FAQ on the RELION Wiki and the archives of the CCPEM
mailing list. If that doesn’t help, subscribe to the CCPEM email list and
use the email address above for asking your question. Please, please,
please, do not send a direct email to Sjors, as he can no longer respond
to all of those.

mailto:ccpem@jiscmail.ac.uk
http://www2.mrc-lmb.cam.ac.uk/relion/index.php/FAQs
https://www.jiscmail.ac.uk/ccpem

Contents

1

Preprocessing

1.1 Getting organised oL
1.2 Beam-induced motion correction
1.3 CTF estimation
1.4 Manual particle picking L.
1.5 LoG-based auto-picking
1.6 Particle extraction L oL L
1.7 Making templates for auto-picking
1.8 Selecting templates for auto-picking
1.9 Auto-picking

1.9.1 The shrink parameter
1.10 Particle sortingo

Reference-free 2D class averaging

2.1 Running thejob oo o
2.2 Analysing the results in more detail
2.3 Making groups

De novo 3D model generation

3.1 Running thejob o o
3.2 Analysing theresults

Unsupervised 3D classification

4.1 Running thejob oo
4.2 Analysing the results in more detail

High-resolution 3D refinement

5.1 Running the auto-refine job
5.2 Analysing theresults

Mask creation & Postprocessing

6.1 Makingamask L
6.2 Postprocessing

CTF and beamtilt refinement

7.1 Running thejob 0
7.2 Analysing theresults

Bayesian polishing

8.1 Running in trainingmode
8.2 Running in polishing mode
8.3 Analysing theresults oo

8.4 When and how to run CTF refinement and Bayesian polishing

Local-resolution estimation

26
26
27
28

29
29
30

31
31
33

34
35
36

37
37
38

40
40
41

41
41
43
43
44

45

9.1 Running thejob o
9.2 Analysing theresults L.

10 Checking the handedness

11 Wrapping up

11.1 Making a flowchart
11.2 Cleaning up your directories
11.3 Asking questions and citingus 0oL
11.4 Further reading

12 Appendix A: notes on installation

12.1 Inmstall MPI
12.2 Install CUDA
12.3 Install RELION
12.4 Install motion-correction software
12.5 Install CTF-estimation software
12.6 Install RESMAP

13 Appendix B: using RELION

13.1 The GUL. oo
13.1.1 A pipeline approach
13.1.2 The upper half: jobtype-browser and parameter-panel . .
13.1.3 The lower half: job-lists and stdout/stderr windows . . .
13.1.4 The Display button,
13.1.5 The Job actions button
13.1.6 Clean-up to save disk space

13.2 Optimise computations for your setup
13.2.1 GPU-acceleration
13.2.2 Disk access o

13.3 Scheduling jobs o

13.4 On-the-fly processing

13.5 Helical reconstruction

13.6 Sub-tomogram averaging

13.7 Interaction with other programs.

46

47
47
47
47
48

49
49
49
49
49
50
50

1 Preprocessing

1.1 Getting organised

We recommend to create a single directory per project, i.e. per structure you
want to determine. We'll call this the project directory. It is important to
always launch the RELION graphical user-interface (GUI) from the
project directory. Inside the project directory you should make a separate
directory to store all your raw micrographs or micrograph movies in MRC or
TIFF format. We like to call this directory Movies/ if all movies are in one
directory, or for example Movies/15jan16/ and Movies/23jan16/ if they are
in different directories (e.g. because they were collected on different dates). If
for some reason you do not want to place your movies inside the RELION project
directory, then inside the project directory you can also make a symbolic link
to the directory where your movies are stored.

Single-image micrographs should have a .mrc extension, movies can have a
.mrc, .mrcs or .tiff extension. When you unpacked the tutorial test data,
the (Movies/) directory was created. It should contain 24 movies in compressed
TIFF format, a gain-reference file (gain.mrc) and a NOTES file with information
about the experiment.

We will start by launching the RELION GUI. As said before, this GUI always
needs to be launched from the project directory. To prevent errors with this,
the GUI will ask for confirmation the first time you launch it in a new directory.
Therefore, the first time you launch the GUI in a new directory, you should not
use the “&” character to launch it in the background. Make sure you are inside
the project directory, and launch the GUI by typing:

relion

[

and answer “y” to set up a new RELION project here.

The first thing to do is to import the set of recorded micrograph movies into the
pipeline. Select “Import” from the job-type browser, and fill in the following
parameters:

e Input files: Movies/*.tiff
® Node type: 2D micrograph movies

You may provide a meaningful alias (for example: movies) for this job in the
white field named Current job: Give_alias_here. Clicking the [Run‘now!
button will launch the job. A directory called Import/job001/ will be created,
together with a symbolic link to this directory that is called Import/movies.
Inside the newly created directory a STAR file with all the movies is created.
Have a look at it using:

less Import/job001/movies.star

If you had extracted your particles in a different software package, then instead
of going through the Preprocessing steps below, you would use the same
job-type to import particles STAR file, 3D references, 3D masks, etc. Note
that this is NOT the recommended way to run RELION, and that the user is
responsible for generating correct STAR files.

1.2 Beam-induced motion correction

The [Motion correction] job-type provides a wrapper to UCSF MOTIONCOR2 [21]
for convenient whole-frame movie alignment. Alternatively, as of version 3.0
one can also use RELION’s own implementation of the same algorithm as in
MOTIONCOR2. Note that our own implementation only runs on the CPU. On
the I/O tab set:

e Input movies STAR file: Import/movies/movies.star
(Note that the Browse button will only list movie STAR files.)

e First frame for corrected sum: 1

e Last frame for corrected sum: O
(This will result in using all movie frames.)

e Pixel size (A) 0.885

e Voltage (kV 200

e Dose per frame (e/A2) 1.277

e Pre-exposure (e/A2) O

® Do dose-weighting? Yes

® Save non-dose-weighted as well? No

(In some cases non-dose-weighted micrographs give better CTF estimates.
To save disk space, we're not using this option here as the data are very
good anyway.)

Fill in the Motioncor2 tab as follows:
e Bfactor: 150
(use larger values for super-resolution movies)
® Number of patches X,Y 5 5
® Group frames: 1
e Binning factor: 1

(we often use 2 for super-resolution movies)

e Gain-reference image: Movies/gain.mrc

(This can be used to provide a gain-reference file for on-the-fly gain-
reference correction. This is necessary in this case, as these movies are
not yet gain-corrected.)

® Defect file:

(This can be used to mask away broken pixels on the detector.)
® Gain rotation: No rotation (0)
e Gain flip: No flipping (0)

the gain reference image is already in the correct orientation for this data
g g
set.)

® Use RELION’s own implementation? Yes

(this reduces the requirement to install the UCSF implementation. If you
have the UCSF program installed anyway, you could also use that one. In
that case, you also need to fill in the options below.)

Fill in the Running tab as follows:
® Do dose-weighting? Yes
e Voltage (kV): 200
e Dose per frame (e/A2) 1.277
e Pre-exposure (e/A2) O

Executing this program takes approximately 5 minutes when using 12 threads
on a reasonably modern machine. Note that our own implementation of the
MOTIONCOR2 algorithm does not use a GPU. It is however multi-threaded. As
each thread will work independently on a movie frame, it is optimal to use
a number of threads such that the number of movie frames divided by the
number threads is an integer number. As these movies have 24 frames, us-
ing 12 threads will result in 2 frames being processed by each thread. You
can look at the estimated beam-induced shifts, and their statistics over the
entire data set, by selecting the out: logfile.pdf from the Display: button
below the run buttons, or you can look at the summed micrographs by se-
lecting out: corrected_micrographs.star. Depending on the size of your
screen, you should probably downscale the micrographs (Scale: 0.3) and use
Sigma contrast: 3 and few columns (something like Number of columns: 3)
for convenient visualisation. Note that you cannot select any micrographs from
this display. If you want to exclude micrographs at this point (which we will not

do, because they are all fine), you could use the job-type.

1.3

CTF estimation

Next, we will estimate the CTF parameters for each corrected micrograph. You

can use the job-type as a wrapper to Kai Zhang’s GCTF, or

you can also use Alexis Rohou and Niko Grigorieff’s ¢TFFIND4.1 if you don’t
have a suitable GPU. On the I/O tab, use the Browse button to select the
corrected_micrographs.star file of the [Motion correction] job. Then fill in
the other settings as follows:

On the I/O:

Use micrograph without dose-weighting? No

(These may have better Thon rings than the dose-weighted ones, but we
decided in the previous step not to write these out)

Sperical aberration (mm): 1.4

(your microscope manufacturer provides this value)
Voltage (kV): 200

Amplitude contrast: 0.1

(although amplitude contrast is known to be less, giving values of around
10% has been shown to yield better results for many structures. This may
be because of unmodelled low-frequency inelastic scattering.)

Magnified pixel size (A): 0.885
(These are original movies with a pixel size of 0.885 A.)
Amount of astigmatism (A): 100

(Assuming your scope was reasonably well aligned, this value will be suit-
able for many data sets.)

On the Searches tab, you provide general parameters for CTFFIND (see Niko’s
documentation for their exact meaning). Note that these settings will be ignored
(by default, though one can switch this off) when using GCTF.

FFT box size (pix): 512

Minimum resolution (A): 30
Maximum resolution (A): 7.1
Minimum defocus cvalue (A): 5000
Maximum defocus cvalue (A): 50000
Defocus step size (A): 500

Amount of astigmatism (A): 100

e Estimate phase shifts No
(This is useful for phase-plate data only.)

Ignore the CTFFIND-4.1 tab if using ¢CTF, and vice versa. In this example,
we used GCTF and on the Getf tab, we set:

® Use Gectf instead? Yes
® Gctf executable: /wherever/it/is/Gcectf

(Note that environment variables $RELION_CTFFIND_EXECUTABLE and $RELION_GCTF_EXECUTABLE
are used to control the default values for the GUI entries of the correspond-
ing programs.)

® Ignore ’Searches’ parameters? Yes

(Set this to 'No’ in order to pass the parameters on the [Searches tab onto
GCTF. By default, these values are ignored and GCTF’s own defaults are
used.)

® Perform equi-phase averaging? Yes
(This leads to better SNR in the Thon rings.)
® (Other Gctf options:
® Which GPUs to use: O
(one GPU will probably be neough for this small data set)

You can run the program using multiple MPI processes, depending on your
machine. Using only a single processor and GPU, the job took 31 seconds
with GCTF. Once the job finishes there are additional files for each micrograph
inside the output CtfFind/job003/Movies directory: the .ctf file contains an
image in MRC format with the computed power spectrum and the fitted CTF
model; the .log file contains the output from CTFFIND or GCTF; (only in case
of using CTFFIND, the .com file contains the script that was used to launch
CTFFIND).

You can visualise all the Thon-ring images using the Display button, selecting
out: micrographs_ctf.star. The zeros between the Thon rings in the ex-
perimental images should coincide with the ones in the model. Note that you
can sort the display in order of defocus, maximum resolution, figure-of-merit,
etc. The logfile.pdf file contains plots of useful parameters, such as defocus,
astigmatism, estimated resolution, etc for all micrographs, and histograms of
these values over the entire data set. Analysing these plots may be useful to
spot problems in your data acquisition.

If you see CTF models that are not a satisfactory fit to the experimental
Thon rings, you can delete the .log files for those micrographs, select the

CtfFind/job003 entry from the |Finished jobs| list, alter the parameters in the

parameter-panel, and then re-run the job by clicking the Continue now button.
Only those micrographs for which a .log file does not exist will be re-processed.
You can do this until all CTF models are satisfactory. If this is not possible,
or if you decide to discard micrographs because they have unsatisfactory Thon

rins, you can use the job-type to do this.

1.4 Manual particle picking

The next job-type | Manual picking| may be used to manually select particle coor-

dinates in the (averaged) micrographs. We like to manually select at least several
micrographs in order to get familiar with our data. Often, the manually selected
particles to calculate reference-free 2D class averages, which will then be used as
templates for automated particle picking of the entire data set. However, as of
release 3.0, RELION also contains a reference-free auto-picking procedure based
on a Laplacian-of-Gaussian (LoG) filter. In most cases tested thus far, this
procedure provides reasonable starting coordinates, so that the
step may be skipped. The relion_it.py script makes use of this functionality
to perform fully automated on-the-fly processing. In this tuorial, we will just

launch a job for illustrative purposes, and then proceed with

LoG-based to generate the first set of particles.

Picking particles manually is a personal experience! If you don’t like to pick
particles in RELION, we also support coordinate file formats for Jude Short’s
XIMDISP [17] (with any extension); for XMIPP-2.4 [16] (with any extension);
and for Steven Ludtke’s E2BOXER.PY [I18] (with a .box extension). If you
use any of these, make sure to save the coordinate files as a text file in the
same directory as from where you imported the micrographs (or movies), and
with the same micrograph rootname, but a different (suffix+) extension as the
micrograph, e.g. Movies/006.box or Movies/006_pick.star for micrograph
Movies/006.mrc. You should then use the [Tmport]job-type and set Node type:
to 2D/3D particle coordinates. Make sure that the Input Files: field con-
tains a linux wildcard, followed by the coordinate-file suffix, e.g. for the exam-
ples above you have to give Movies/*.box or Movies/*_pick.star, respec-
tively.

On the I/O tab of the | Manual picking|job-type, use the Browse button to select

the micrographs_ctf.star file that was created in CtfFind/job003, ignore the
Colors tab, and fill in the Display tab as follows:

e Particle diameter (A): 200

(This merely controls the diameter of the circle that is displayed on the
micrograph.)

® Scale for micrographs: 0.25

(But this depends on your screen size)

http://www2.mrc-lmb.cam.ac.uk/research/locally-developed-software/image-processing-software/
http://xmipp.cnb.uam.es
http://blake.bcm.edu/emanwiki/EMAN2/Programs/e2boxer

® Sigma contrast: 3

(Micrographs are often best display with “sigma-contrast”, i.e. black will
be 3 standard deviation below the mean and white will be 3 standard
deviations above the mean. The grey-scale is always linear from black to
white. See the Displaylmages entry on the RELION wiki for more details)

® White value: O

(Use this to manually set which value will be white. For this to work,
Sigma contrast should be set to 0)

e Black value: O

(Use this to manually set which value will be black. For this to work,
Sigma contrast should be set to 0)

e Lowpass filter (A): 20

(Playing with this may help you to see particles better in very noisy mi-
crographs)

e Highpass filter (A): O

(This is sometimes useful to remove dark-;light gradients over the entire
micrograph)

® Pixel size: 0.885

(This is needed to calculate the particle diameter, and the low- and high-
pass filters)

e Scale for CTF image: 1

(This merely controls how large the Thon-ring images will be when you
click the CTF button for any micrograph)

Run the job by clicking the [Ruifiow!] button and click on a few particles if you
want to. However, as we will use the LoG-based autopicking in the next section,
you do not need to pick any if you don’t want to. If you were going to
use manually picked particles for an initial job, then you would
need approximately 500-1,000 particles in order to calculate reasonable class
averages. Left-mouse click for picking, middle-mouse click for deleting a picked
particle, right-mouse click for a pop-up menu in which you will need to save
the coordinates!. Note that you can always come back to pick more from where
you left it (provided you saved the STAR files with the coordinates throught the
pop-up menu), by selecting ManualPick/job004 from the Finished jobs and
clicking the Continue now button.

10

http://www2.mrc-lmb.cam.ac.uk/relion/index.php/DisplayImages

1.5 LoG-based auto-picking

We will now a template-free auto-picking procedure based on a Laplacian-of-
Gaussian (LoG) filter to select an initial set of particles. These particles will then

be used in a 2D classification | job to generate templates for a second

job. Because we do not need many particles in the first round, we will only per-
form LoG-based auto-picking on the first 3 micrographs. Note that in general,
one would probably perform LoG-based picking on all available micrographs to
get as good templates as possible. However, here we only use a few micrographs
to speed up the calculations in this tutorial.

First, in order to select a few micrographs, go to the job, and

on the T/O tab leave everything empty, except:
e OR select from picked coords: ManualPick/job004/coords_suffix manualpick.star

(which was generated when we saved a few manually picked coordinates.
We are not going to use the coordinates here, we are only using that job
to make a subset selecton of the micrographs.)

We used an alias 5mics for this job. When you press [Rumll, the same pop-

up window of the |Manual picking| job will appear again, i.e. the one with all

the pick and CTF buttons. Use the 'File’ menu to ’Invert selection’; click on
the check box in front of the first five micrographs to select those; and then
use the 'File’ menu again to 'Save selection’. This will result in a file called
ManualPick/job004/micrographs_selected.star, which we will use for the

job below.
Then, proceed to the job, and on the I/O tab set:

e Input micrographs for autopick: Select/job005/micrographs_selected.star
e Pixel size in micrographs (A) -1

(The pixel size will be set automatically from the information in the input
STAR file.)

e 2D references:
(Leave this empty for template-free LoG-based auto-picking.)
® (OR: provide a 3D reference? No
e (OR: use Laplacian-of-Gaussian? Yes
On the Laplacian tab, set:
e Min. diameter for loG filter (A) 150
® Max. diameter for loG filter (A) 180

(This should correspond to the smallest and largest size of your particless
projections in Angstroms.)

11

® Are the particles white? No
(They are black.)

® Maximum resolution to comnsider 20
(Just leave the default value here.)
® Adjust default threshold O

(Positive values, i.e. high thresholds, will pick fewer particles, negative
values will pick fewer particles. Useful values are probably in the range
[-1,1], but in many cases the default value of zero will do a decent job.)

Ignore the References tab, and on the autopicking tab, the first four options
will be ignored. Set the rest as follows:

® Write FOM maps? No

(This will be used in the template-based picking below.)
® Read FOM maps? No

(This will be used in the template-based picking below.)
e Shrink factor: O

(By setting shrink to 0, the autopicking program will downscale the mi-
crographs to the resolution of the lowpass filter on the references. This
will go much faster and require less memory, which is convenient for doing
this tutorial quickly. Values between 0 and 1 will be the resulting fraction
of the micrograph size. Note that this will lead to somewhat less accu-
rate picking than using shrink=1, i.e. no downscaling. A more detailed
description of this new parameter is given in the next subsection.)

e Use GPU acceleration? No

(LoG-based picking has not been GPU-accelerated as the calculations are
very quick anyway.)

® Which GPUs to use:

Ignore the Helix tab, and run using a single MPI processor on the Running tab .
Perhaps an alias like LoG_based would be meaningful? Using a single processor,
these calculations take about 40 seconds on our computer.

You can check the results by clicking the coords_suffix_autopick option from
the Display: button. One could manually add/delete particles in the pop-up
window that appears at this stage. In addition, one could choose to pick more
or fewer particle by running a new job while adjusting the default threshold on
the Laplacian tab, and/or the parameters for the stddev and avg of the noise
on the lautopicking tab. However, at this stage we are merely after a more-
or-less OK initial set of particles for the generation of templates for a second
auto-picking job, so in many cases this is probably not necessary.

12

1.6 Particle extraction

Once you have a coordinate file for every micrograph that you want to pick par-
ticles from, you can extract the corresponding particles and gather all required
metadata through the [Particle extraction| job-type. On the corresponding T/O
tab, set:

e micrograph STAR file: CtfFind/job003/micrographs_ctf.star

(Use the Browse button to select this file. You could also chose the selected
micrographs file from the ManualPick directory. It doesn’t matter as
there are only coordinate files for the three selected micrographs anyway.
Warning that coordinates files are missing for the rest of the micrographs
will appear in red in the bottom window of the GUTL)

e Coordinate-file suffix: AutoPick/job006/coords suffix autopick.star
(Use the Browse button to select this file)

® (R re-extract refined particles? No

(This option allows you to use a _data.star file from a [2D cassification],

[3D classification | or [3D auto-refine] job for re-extraction of only those parti-
cles in the STAR file. This may for example be useful if you had previously
down-scaled your particles upon extraction, and after initial classifications
you now want to perform refinements with the original-scaled particles.
In RELION-3.0, this functionality has been extended with an option to
‘re-center refined coordinates’ on a user-specified X,Y,Z-coordinate in the
3D reference used for a [3D classification| or [3D auto-refine| job. This will
adjust the X and Y origin coordinates of all particles, such that a recon-
struction of the newly extracted particles will be centered on that X,Y,Z
position. This is useful for focused refinements.)

® Manually set pixel size? No

(This is only necessary when the input micrograph STAR file does NOT
contain CTF information.)

On the lextract tab you set the parameters for the actual particle extrac-
tion:

e Particle box size (pix): 256

(This should always be an even number!)
® Invert contrast? Yes

(This makes white instead of black particles.)
® Normalize particles? Yes

(We always normalize.)

13

e Diameter background circle (pix): 200

(Particles will be normalized to a mean value of zero and a standard-
deviation of one for all pixels in the background area.The background area
is defined as all pixels outside a circle with this given diameter in pixels
(before rescaling). When specifying a negative value, a default value of
75% of the Particle box size will be used.)

e Stddev for white dust removal: -1
e Stddev for black dust removal: -1

(We only remove very white or black outlier pixels if we actually see them
in the data. In such cases we would use stddev values of 5 or so. In this
data set there are no outlier pixels, so we don’t correct for them, and leave
the default values at -1 (i.e. don’t do anything).

® Rescale particles? Yes

(Down-scaling particles will speed up computations. Therefore, we often
down-scale particles in the initial stages of processing, in order to speed
up the initial classifications of suitable particles. Once our reconstructions
get close to the Nyquist frequency, we then re-extract the particles without
down-scaling.)

® Re-scaled sized (pixels)? 64

As we will later on also use the same job-type to extract all template-based auto-
picked particles, it may be a good idea to give this job an alias like LoG_based.
Ignore the Helix tab, and run using a single MPI processor.

Your particles will be extracted into MRC stacks (which always have an .mrcs
extension in RELION) in a new directory called Extract/job007/Movies/. It’s
always a good idea to quickly check that all has gone OK by visualising your
extracted particles selecting out: particles.star from the Display: button.
Right-mouse clicking in the display window may be used for example to select
all particles (Invert selection) and calculating the average of all unaligned
particles (Show average of selection).

1.7 Making templates for auto-picking

To calculate templates for the subsequent auto-picking of all micrographs, we

will use the |2D classification | job-type. On the 1/O tab, select the Extract/job007/particles.star
file (using the Browse button), and on the [CTE tab set:

® Do CTF-correction? Yes

(We will perform full phase+amplitude correction inside the Bayesian
framework)

14

e Have data been phase-flipped? No
(This option is only useful if you pre-processed your data outside RELION)
® Ignore CTFs until first peak? No

(This option is occasionally useful, when amplitude correction gives spu-
riously strong low-resolution components, and all particles get classified
together in very few, fuzzy classes.)

On the Optimisation tab, set:
® Number of classes: 50

(For cryo-EM data we like to use on average at least approximately 100
particles per class. For negative stain one may use fewer, e.g. 20-50 par-
ticles per class. However, with this small number of particles, we have
observed a better separation into different classes by relaxing these num-
bers. Possibly, always having a minimum of 50 classes is not a bad idea.)

® Regularisation parameter T: 2

(For the exact definition of T, please refer to [13]. For cryo-EM 2D classi-
fication we typically use values of T=2-3, and for 3D classification values
of 3-4. For negative stain sometimes slightly lower values are better. In
general, if your class averages appear very noisy, then lower T; if your
class averages remain too-low resolution, then increase T. The main thing
is to be aware of overfitting high-resolution noise.)

® Number of iterations: 25
(We hardly ever change this)
® Use fast subsets for large data sets? No

(If set to Yes, the first 5 iterations will be done with random subsets of
only K*100 particles (K being the number of classes); the next 5 with
K*300 particles, the next 5 with 30% of the data set; and the final ones
with all data. This was inspired by a cisTEM implementation by Niko
Grigorieff et al. This option is very useful to make classification of very
large data sets (with hundreds of thousands of particles, much faster. For
a small data set like this one, it is not needed.)

® Mask diameter (A): 200

(This mask will be applied to all 2D class averages. It will also be used
to remove solvent noise and neighbouring particles in the corner of the
particle images. On one hand, you want to keep the diameter small,
as too much noisy solvent and neighbouring particles may interfere with
alignment. On the other hand, you want to make sure the diameter is
larger than the longest dimension of your particles, as you do not want to
clip off any signal from the class averages.)

15

® Mask individual particles with zeros? Yes
e Limit resolution E-step to (A): -1

(If a positive value is given, then no frequencies beyond this value will be
included in the alignment. This can also be useful to prevent overfitting.
Here we don’t really need it, but it could have been set to 10-15A any-
way. Difficult classifications, i.e. with very noisy data, often benefit from
limiting the resolution.)

On the Sampling tab we hardly ever change the defaults. Six degrees angular
sampling is enough for most projects, although some large icosahedral viruses
may benefit from finer angular samplings. In that case, one could first run
25 iterations with a sampling of 6 degrees, and then continue that same run
(using the Continue now button) for an additional five iteration (by setting
Number of iteratiomns: 30 on the |Optimisation tab) with a sampling of say
2 degrees. For this data set, this is NOT necessary at all. It is useful to note
that the same Continue now button may also be used to resume a job that has
somehow failed before, in which case one would not change any of the param-
eters. For continuation of [2D classification], [3D classification], or [3D auto-refine]
jobs one always needs to specify the _optimiser.star file from the iteration
from which one continues on the 1/O tab.

Ignore the [Helix tab, and on the Compute tab, set:
e Use parallel disc I/07 Yes

(This way, all MPT slaves will read their own particles from disc. Use this
option if you have a fast (parallel?) file system. Note that non-parallel
file systems may not be able to handle parallel access from multiple MPI
nodes. In such cases one could set this option to No. In that case, only
the master MPI node will read in the particles and send them through the
network to the MPI slaves.)

® Number of pooled particles: 30

(Particles are processed in individual batches by MPI slaves. During each
batch, a stack of particle images is only opened and closed once to im-
prove disk access times. All particle images of a single batch are read
into memory together. The size of these batches is at least one particle
per thread used. The nr_pooled_particles parameter controls how many
particles are read together for each thread. If it is set to 30 and one uses
8 threads, batches of 30x8=240 particles will be read together. This may
improve performance on systems where disk access, and particularly meta-
data handling of disk access, is a problem. Typically, when using GPUs
we use values of 10-30; when using only CPUs we use much smaller values,
like 3. This option has a modest cost of increased RAM usage.)

® Pre-read all particles into RAM? Yes

16

(If set to Yes, all particle images will be read into computer memory, which
will greatly speed up calculations on systems with slow disk access. How-
ever, one should of course be careful with the amount of RAM available.
Because particles are read in double-precision, it will take (N * box_size
* box_size * 4 / (1024 * 1024 * 1024)) Giga-bytes to read N particles into
RAM. If parallel disc I/O is set to Yes, then all MPI slaves will read in all
particles. If parallel disc I/0O is set to No, then only the master reads all
particles into RAM and sends those particles through the network to the
MPT slaves during the refinement iterations.)

® Copy particles to scratch directory?

(This is useful if you don’t have enough RAM to pre-read all particles, but
you do have a fast (SSD?) scratch disk on your computer. In that case,
specify the name of the scratch disk where you can make a temporary
directory, e.g. /ssd)

® Combine iterations through disc? No

(This way all MPI nodes combine their data at the end of each iteration
through the network. If the network is your main bottle-neck or somehow
causing problems, you can set this option to No. In that case, all MPI
nodes will write/read their data to disc.)

® Use GPU acceleration? Yes
(If you have a suitable GPU, this job will go much faster.)
® Which GPUs to use: 0:1:2:3

(This will depend on the available GPUs on your system! If you leave this
empty, the program will try to figure out which GPUs to use, but you can
explicitly tell it which GPU IDs , e.g. 0 or 1, to use. If you use multiple
MPI-processors, you can run each MPI process on a specified GPU. GPU
IDs for different MPI processes are separated by colons, e.g. 0:1:0:1 will
run MPI process 0 and 2 on GPU 0, and MPI process 1 and 3 will run on
GPU 1.)

On the Running tab, specify the 'Number of MPI processors’ and the 'Num-
ber of threads’ to use. The total number of requested CPUs, or cores, will be
the product of the two values. Note that [2D classification], [3D classification],
[3D initial model| and [3D auto-refine| use one MPI process as a master, which
does not do any calculations itself, but sends jobs to the other MPI proces-
sors. Therefore, if one specifies 4 GPUs above, running with five MPI pro-
cesses would be a good idea. Threads offer the advantage of more efficient
RAM usage, whereas MPI parallelization scales better than threads. Often, for
[3D classification | and [3D auto-refine] jobs you will probably want to use many
threads in order to share the available RAM on each (multi-core) computing
node. 2D classification is less memory-intensive, so you may not need so many
threads. However, the points where communication between MPI processors

17

(the bottle-neck in scalability there) becomes limiting in comparison with run-
ning more threads, is different on many different clusters, so you may need to
play with these parameters to get optimal performance for your setup. We pre-
read all particles into RAM, used parallel disc I/O, 4 GPUs and 5 MPI process
with 6 threads each, and our job finished in approximately four minutes.

Because we will run more |2D classification | jobs, it may again be a good idea to

use a meaningful alias, for example LoG_based. You can look at the resulting
class averages using the Display: button to select out: run_it025_model.star
from. On the pop-up window, you may want to choose to look at the class
averages in a specific order, e.g. based on rlnClassDistribution (in re-
verse order, i.e. from high-to-low instead of the default low-to-high) or on
rlnAccuracyRotations.

1.8 Selecting templates for auto-picking
Selection of suitable class average images is done in the job-

type. On the I/O tab select the Class2D/LoG_based/run_it025_model.star
file using the Browse button on the line with Select classes from model.star:.

On the Class options tab, give:
® Re-center the class averages? Yes

(This option allows automated centering of the 2D class averages. The
images are centered based on their center-of-mass, and the calculations
for this require that the particles are WHITE (not black). Re-centering
is often necessary, as class averages may become non-centred in the 2D
classification run. In particular when using class average images for auto-
picking it is important that the are centered, as otherwise all your particle
coordinates will become systematically off-centered.)

® Regroup the particles? No

(This option is useful when there are very few (selected) particles on in-
dividual micrographs, in which case the estimation of noise power spectra
and scale factors become unstable. By default, the latter are calculated
independently per micrograph. This option allows to grouping particles
from multiple micrographs together in these calcutaions. RELION will warn
you (in classification or auto-refine runs) when your groups become too
small.)

An alias like templates4autopick may be a good idea. You may again want
to order the class averages based on their r1lnClassDistribution. Select a few
class averages that represent different views of your particle. Don’t repeat very
similar views, and don’t include bad class averages. We selected four templates
from our run. Selection is done by left-clicking on the class averages. You can

18

save your selection of class averages from the right-click pop-up menu using the
Save selected classes option.

1.9 Auto-picking

We will now use the selected 2D class averages as templates in a reference-based

run of the job-type. However, before we will run the auto-picking

on all micrographs, we will need to optimise four of its main parameters on the
autopicking tab: the Picking threshold, the Minimum inter-particle distance,
the Maximum stddev noise, and the Minimum avg noise. This will be done

on only a few micrographs in order to save time. We will use the same five
micrographs we selected for the LoG-based auto-picking before.

Then, on the T/O tab of the job-type, set:

e Input micrographs for autopick: Select/bmics/micrographs.star
e Pixel size in micrographs (A) -1

(The pixel size will be set automatically from the information in the input
STAR file.)

e 2D references: Select/templates4autopick/class_averages.star
® (OR: provide a 3D reference? No
® (OR: use Laplacian-of-Gaussian? No
On the References tab, set:
e Lowpass filter references (A): 20

(Tt is very important to use a low-pass filter that is significantly LOWER
than the final resolution you aim to obtain from the data, to keep “Einstein-
from-noise” artifacts at bay)

e Highpass filter (A): -1

(If you give a positive value, e.g. 200, then the micrograph will be high-
pass filtered prior to autopicking. This can help in case of strong grey-scale
gradients across the micrograph.)

® Pixel size in references (A): 3.54

(If a negative value is given, the references are assumed to be on the
same scale as the input micrographs. If this is not the case, e.g. because
you rescaled particles that were used to create the references upon their
extraction, then provide a positive value with the correct pixel size in the
references here. As we downscaled the particles by a factor of 4 (i.e. from
256 to 64) in the [Particle extraction] job, the pixel size in the references is
now 4 % 0.885 = 3.54A.)

19

Mask diameter (A) -1

(When a negative value is given, the diameter of the mask will be deter-
mined automatically from the input reference images to be the same as

the one used in the job.)
e Angular sampling (deg): 5

(This value seems to work fine in almost all cases.)
® References have inverted contrast? Yes

(Because we have black particles in the micrographs, and the references
we will use are white.)

Are References CTF corrected? Yes
(Because we performed 2D class averaging with the CTF correction.)

e Ignore CTFs until first peak: No

(Only use this option if you also did so in the [2D classification| job that

you used to create the references.)
On the autopicking tab, set:
® Picking threshold: 0.8

(This is the threshold in the FOM maps for the peak-search algorithms.
Particles with FOMs below this value will not be picked.)

e Minimum inter-particle distance (A): 200

(This is the maximum allowed distance between two neighbouring par-
ticles. An iterative clustering algorithm will remove particles that are
nearer than this distance to each other. Useful values for this parameter
are often in the range of 50-60% of the particle diameter.)

® Maximum stddev noise: -1

(This is useful to prevent picking in carbon areas, or areas with big con-
tamination features. Peaks in areas where the background standard de-
viation in the normalized micrographs is higher than this value will be
ignored. Useful values are probably in the range 1.0 to 1.2. Set to -1 to
switch off the feature to eliminate peaks due to high background standard
deviations.)

® Minimum avg noise: -999

(This is useful to prevent picking in carbon areas, or areas with big contam-
ination features. Peaks in areas where the background standard deviation
in the normalized micrographs is higher than this value will be ignored.
Useful values are probably in the range -0.5 to 0. Set to -999 to switch off
the feature to eliminate peaks due to low average background densities.)

20

® Write FOM maps? Yes

(See the explanation below.)
® Read FOM maps? No

(See the explanation below.)
e Shrink factor: O

(By setting shrink to 0, the autopicking program will downscale the mi-
crographs to the resolution of the lowpass filter on the references. This
will go much faster and require less memory, which is convenient for doing
this tutorial quickly. Values between 0 and 1 will be the resulting fraction
of the micrograph size. Note that this will lead to somewhat less accu-
rate picking than using shrink=1, i.e. no downscaling. A more detailed
description of this new parameter is given in the next subsection.)

e Use GPU acceleration? Yes
(Only if you have a suitable GPU!)
® Which GPUs to use: O

(If you leave this empty, the program will try to figure out which GPUs
to use, but you can explicitly tell it which GPU IDs , e.g. 0 or 1, to use.
If you use multiple MPI-processors (not for this case!), you can run each
MPI process on a specified GPU. GPU IDs for different MPI processes are
separated by colons, e.g. 0:1:0:1 will run MPI process 0 and 2 on GPU 0,
and MPT process 1 and 3 will run on GPU 1.)

Ignore the Helix tab, and run using a single MPI processor on the Running tab .
Perhaps an alias like optimise_params would be meaningful? When using
GPU-acceleration, the job completes in half a minute.

The expensive part of this calculation is to calculate a probability-based figure-
of-merit (related to the cross-correlation coefficient between each rotated ref-
erence and all positions in the micrographs. This calculation is followed by
a much faster peak-detection algorithm that uses the threshold and minimum
distance parameters mentioned above. Because these parameters need to be
optimised, the program will write out so-called FOM maps as specified on the
References tab. These are two large (micrograph-sized) files per reference. To
avoid running into hard disc I/O problems, the autopicking program can only
be run sequentially (hence the single MPI processor above) when writing out
FOM maps.

Once the FOM maps have been written to disc they can be used to optimise
the picking parameters much faster. First, examine the auto-picked particles
with the current settings using the coords_suffix_autopick option from the
Display: button of the job you just ran. Note that the display window will take

its parameters (like size and sigma-contrast) from the last |Manual picking| job

21

you executed. You can actually change those parameters in the

job-type, and save the settings use the option Save job settings from the
top left Jobs menu. Do this, after you've set on the following on the Colors
tab:

® Blue<>red color particles? Yes
® MetaDatalabel for color: rlnAutopickFigureOfMerit
e STAR file with color label:
Leave this empty.
e Blue value: 1
® Red value: O

Executing the job on the Running tab will produce a similar GUI with pick
and CTF buttons as before. Open both micrographs from the display window,
and decide whether you would like to pick more or less particles (i.e. decrease
or increase the threshold) and whether they could be closer together or not
(fot setting the minimum inter-particle distance). Note that each particle is
colored from red (very low FOM) to blue (very high FOM). You can leave the
display windows for both micrographs open, while you proceed with the next
step.

Select the AutoPick/optimise_params job from the |Finished jobs|, and change

the parameters on the autopicking tab. Also, change:
e Write FOM maps? No
® Read FOM maps? Yes

When executing by clicking the Continue now button, this will re-read the pre-
viously written FOM maps from disc instead of re-doing all FOM calculations.
The subsequent calculation of the new coordinates will then be done in a few
seconds. Afterwards, you can right-click in the micrograph display windows
and select Reload coordinates from the pop-up menu to read in the new set
of coordinates. This way you can quickly optimise the two parameters.

Have a play around with all three parameters to see how they change the
picking results. Once you know the parameters you want to use for auto-

picking of all micrographs, you click the option in the job-type
browser on the top left of the GUI to select a job with a [Runimowd but-
ton. On the 1/O tab, you replace the input micrographs STAR file with the

2 selected micrographs with the one from the original job

(CtfFind/job003/micrographs_ctf.star). Leave everything as it was on the
References tab, and on the autopicking tab set:

® Picking threshold: 0.0

22

e Minimum inter-particle distance (A): 100
(Good values are often around 50-70% of the particle diameter.)
® Maximum stddev noise: -1
e Minimum avg noise: -999
® Write FOM maps? No
® Read FOM maps? No

This time, the job may be run in parallel (as no FOM maps will be written out).
On the Running tab, specify the number of cores to run auto-picking on. The
maximum useful number of MPI processors is the number of micrographs in the
input STAR file. Using only a single MPI process and a single GPU, our calcula-
tion still finisged in about one minute. We used as alias template_based.

Note that there is an important difference in how the Continue now button works
depending on whether you read/write FOM maps or not. When you either write
or read the FOM maps and you click Continue now , the program will re-pick all
input micrographs (typically only a few). However, when you do not read, nor
write FOM maps, i.e. in the second job where you’ll autopick all micrographs,
upon clicking the Continue now button, only those micrographs that were not
autopicked yet will be done. This is useful in the iterative running of scheduled
jobs, e.g. for on-the-fly data processing during your microscopy session. Also
see section 13.3 for more details. If you want to-repick all micrographs with a
new set of parameters (instead of doing only unfinished micrographs), then click

the entry on the jobtype-browser on the left to get a [Runmowh

button instead, which will then make a new output directory.

You can again check the results by clicking the coords_suffix_autopick option
from the Display: button. Some people like to manually go over all micrographs
to remove false positives. For example, carbon edges or high-contrast artifacts
on the micrographs are often mistaken for particles. You can do this for each
micrograph using the pop-up window from the Display: button. Remove par-
ticles using the middle-mouse button; you can hold it down to remove many
false positives in larger areas. Remember to save the new coordinates using the
right-mouse click pop-up menu!

Once you’re happy with the overall results, in order to save disc space you
may want to delete the FOM-maps that were written out in the first step.
You can use the Gentle clean option from the Job actions button to do that
conveniently.

Once you are happy with your entire set of coordinates, you will need to re-
run a |Particle extraction| job, keeping everything as before, and change the
Input coordinates for the newly generated, autopick ones. This will gener-
ate your initial single-particle data set that will be used for further refinements
below. Perhaps an alias like template_based would be meaning ful?

23

1.9.1 The shrink parameter

To enable faster processing, RELION implements a filtering option of the micro-
graphs through the command-line argument --shrink. The simplest way to
use it is to simply use —-shrink 0. But it can be used with much more control.
If this is desired, it works in the following way:

The default value for --shrink is 1.0, which has no effect and does not fil-
ter the micrographs at all. This is identical behaviour to versions prior to the
RELION-2.0 autopicker.

e ——shrink wval = 0 results in a micrograph lowpassed to --lowpass, the
same as that of the reference templates. This is recommended use for
single-particle analysis (but not for helical picking).

e ——shrink 0 < val < 1 results in a size = val - micrograph_size, i.e. val is
a scaling factor applied to the micrographs original size.

e —-shrink val > 1 results in a size = val — (val mod 2), i.e. the small-
est even integer value lower than val. This is then a way to give the
micrographs a specific (even) integer size.

If the new size is smaller than --lowpass, this results in a non-fatal warning,
since this limits resolution beyond the requested (or default) resolution. Because
the RELION autopicker does many FFTs, the size of micrographs is now also
automatically adjusted to avoid major pitfalls of FFT computation. A note
of this and how it can be overridden is displayed in the initial output of each
autopicking the user performs.

1.10 Particle sorting

RELION also has a functionality to quickly sort particles based on the difference
between each particle and their aligned, CTF-corrected reference. The sort-

ing program is accessible from the job-type and can be run
whenever references are available for each particle, i.e. after | Auto-picking],

[2D classification], [3D classification] or [3D auto-refine] To demonstrate its use,
we will now run it after the auto-picking.

On the T/O tab, set:
e Input particles to be sorted: Extract/template_based/particles.star

(The file that was generated by the extraction program after the autopick-
ing. In case of [2D classification], [3D classification] or [3D auto-refine] jobs,
the _data.star from the last iteration should be given.)

® References from model.star:

24

(Leave this empty. This is used when the input particles come from a
[2D classification], [3D classification | or [3D auto-refine] job.)

e OR autopicking references: Select/templates4autopick/class_averages.star

(Provide the references that were used for the autopicking job that gave
the coordinates for the extracted particles.)

On the [CTF tab, set:
e Pixel size in references (A) -1
(The references are on the same size as the particles to be sorted.)
® Are References CTF corrected? Yes
® Ignore CTFs until first peak? No

This program runs in a few seconds on a single MPI processes. You can make it
go even faster by using more MPIs. Perhaps you could use after_autopick as
an alias? This job will produce a file called particles_sort.star in the out-
put directory, which will be the same as the input file, but with an additional
column called rlnParticleSelectZScore. You can then select this file in the
[Subset selection |job-type, on the line that says OR select from particles.star.
Make sure that you set the 'Max. nr. images’ entry on the GUI to a negative
value, in order to display all particles! In the pop-up display window, you can
then visualise the particles based on the new column. There will be a strong
tendency to have “good” particles at the top and “bad” particles at the bottom
of the display. One could scroll up from the bottom and decide a given point
from which below all particles need to be discarded and use the right-mouse
pop-up menu to select Select all above and/or (de-)select particles on a one-
by-one basis. Don’t forget to save the output STAR file using the right-mouse
pop-up menu. Perhaps an alias like after_sorting would be useful for this

job?

As of release 3.0, RELION also implements a GUI-based functionality to select
a subset of particles based on values in a STAR file. This comes in handy
for discarding particles after sorting too. If your data set is very large, then
displaying them all can take a long time and cost a lot of computer memory.

Therefore, the job now also outputs a logfile.pdf, with plots

of all the particles’ Z-scores from the sorting algorithm and their histogram.
One could look at these to decide a good value for the Z-score cutoff. Though

we did not do this for the tutorial, one could then go to the

gui, on the I/O tab load the particles_sort.star file, and on the [Subsets
tab set:

® Select based on metadata vaklues? Yes
® Metadata labal for subset selection rlnParticleSelectZScore

® Minimum metadata value: -9999.

25

® Maximum metadata value: 0.8
® (OR: select on image statistics? No

e (OR: split into subsets? No

2 Reference-free 2D class averaging

We almost always use reference-free 2D class averaging to throw away bad par-
ticles. Although we often try to only include good particles for the particle
extraction step in the previous section (for example by manually supervising
the auto-picking results, and by sorting the extracted particles), most of the
times there are still particles in the data set that do not belong there. Because
they do not average well together, they often go to relatively small classes that
yield ugly 2D class averages. Throwing those away then becomes an efficient
way of cleaning up your data.

2.1 Running the job

Most options will remain the same as explained when we were generating tem-
plates for the auto-picking in the previous section, but on the I/O tab of the

2D classification | job-type, set:

e Input images STAR file: Select/after_sorting/particles.star
and on the Optimisation tab, we used:
® Number of classes: 100
(because we now have more particles.)

You could use an alias like after_sorting. Using 4 GPUs, and 5 MPI processes,
each with 6 threads, this job took 20 minutes on our computer. Perhaps a good
time for a cup of coffee?

After the job has finished, we can launch a job, with the

_model.star file from this run as input. An alias like class2d_aftersort may
be meaningful. Now select all nice-looking classes by clicking on them (and/or
using the right-mouse pop-up menu option Select all classes above). At
this point, if you would have used a low threshold in the auto-picking pro-
cedure, you should be very wary of “Einstein-from-noise” classes, which look
like low-resolution ghosts of the templates used to pick them, on which high-
resolution noise may have accumulated. Avoid those in the selection. After all
good classes have been selected use the right-mouse pop-up menu option to save
the selection.

26

Note that this procedure of selecting good classes may be repeated several times.
Also, note that after the 2D classification one could (in principle) re-run the
sorting algorithm to identify remaining outliers in the data (although we do not
often do this in practice).

2.2 Analysing the results in more detail

If you are in a hurry to get through this tutorial, you can skip this sub-section.
It contains more detailed information for the interested reader.

For every iteration of 2D or 3D classification RELION performs, it writes out a
set of files. For the last iteration of our 2D class averaging calculation these
are:

e (Class2D/after_sorting/run_it025_classes.mrcs is the MRC stack with the
resulting class averages. These are the images that will be displayed in the
RELION GUI when you select the _model.star file from the Display: button on
the main GUI. Note that RELION performs full CTF correction (if selected on
the GUI), so your class averages are probably white on a black background. If
the data is good, often they are very much like projections of a low-pass filtered
atomic model. The quality of your 2D class averages are a very good indication
of how good your 3D map will become. We like to see internal structure within
projections of protein domains, and the solvent area around you particles should
ideally be flat. Radially extending streaks in the solvent region are a typical sign
of overfitting. If this happens, you could try to limit the resolution in the E-step
of the 2D classification algorithm.

e (Class2D/after_sorting/run_it025_model.star contains the model parame-
ters that are refined besides the actual class averages (i.e. the distribution of
the images over the classes, the spherical average of the signal-to-noise ratios in
the reconstructed structures, the noise spectra of all groups, etc. Have a look at
this file using the less command. In particular, check the distribution of parti-
cles over each class in the table data_model_classes. If you compare this with
the class averages themselves, you will see that particles with few classes are
low-resolution, while classes with many particles are high-resolution. This is an
important feature of the Bayesian approach, as averaging over fewer particles will
naturally lead to lower signal-to-noise ratios in the average. The estimated spec-
tral signal-to-noise ratios for each class are stored in the data_model_class_N
tables, where N is the number of each class. Likewise, the estimated noise
spectra for each group are stored in the tables called data_model_group_N. The
table data_model_groups stores a refined intensity scale-factor for each group:
groups with values higher than one have a stronger signal than the average,
relatively low-signal groups have values lower than one. These values are often
correlated with the defocus, but also depend on accumulated contamination and
ice thickness.

e Class2D/after_sorting/run_it025_data.star contains all metadata related
to the individual particles. Besides the information in the input particles.star
file, there is now additional information about the optimal orientations, the
optimal class assignment, the contribution to the log-likelihood, etc. Note that

27

this file can be used again as input for a new refinement, as the STAR file format
remains the same.

e Class2D/after_sorting/run_it025_optimiser.star contains some general in-
formation about the refinement process that is necessary for restarting an unfin-
ished run. For example, if you think the process did not converge yet after 25 it-
erations (you could compare the class averages from iterations 24 and 25 to assess

that), you could select this job in the |Finished jobs| panel, and on the I/O tab

select this file for Continue from here, and then set Number of iterations: 40
on the Optimisation tab. The job will then restart at iteration 26 and run until
iteration 40. You might also choose to use a finer angular or translational sam-
pling rate on the Sampling tab. Another useful feature of the optimiser.star files
is that it’s first line contains a comment with the exact command line argument
that was given to this run.

e Class2D/after_sorting/run_it025_sampling.star contains information about
the employed sampling rates. This file is also necessary for restarting.

2.3 Making groups

If you are in a hurry to get through this tutorial, you can skip this sub-section.
It contains more detailed information for the interested reader.

RELION groups particles together to do two things: estimate their average noise
power spectrum and estimate a single-number intensity scale factor that de-
scribes differences in overall signal-to-noise ratios between different parts of the
data, e.g. due to ice thickness, defocus or contamination.

The default behaviour is to treat all particles from each micrograph as a separate
group. This behaviour is fine if you have many particles per micrograph, but
when you are using a high magnification, your sample is very diluted, or your
final selection contains only a few particles per micrograph, then the estimation
of the intensity scale factor (and the noise spectra) may become unstable. We
generally recommend to have at least 10-20 particles in each group, but do note
that initial numbers of particles per group may become much smaller after 2D
and 3D classification.

In cases with few particles per micrograph we recommend to group particles
from multiple micrographs together. For this purpose, the GUI implements
a convenient functionality in the job-type: when selecting a
_model.star file on the I/O tab, one can use Regroup particles? Yes and
Approximate nr of groups: 5 on the Class options tab to re-group all par-
ticles into 5 groups. (The actual number may vary somewhat from the input
value, hence the “Approximate” on the input field.) This way, complicated
grouping procedures in previous releases of RELION may be avoided. As the
micrographs in this tutorial do contain sufficient particles, we will not use this
procedure now.

28

Please note that the groups in RELION are very different from defocus groups
that are sometimes used in other programs. RELION will always use per-particle
(anisotropic) CTF correction, irrespective of the groups used.

3 De novo 3D model generation

RELION uses a Stochastic Gradient Descent (SGD) algorithm to generate a
de novo from the 2D particles. As of RELION-3.0, this imple-
mentation very closely follows the implementation of the cryoSPARC program
[8]. Provided you have a reasonable distribution of viewing directions, and your
data were good enough to yield detailed class averages in [2D classification], this
algorithm is very likely to yield a suitable, low-resolution model that can subse-
quently be used for [3D classification| or [3D auto-refinement]. Note that, with
the improved implementation in release 3.0, it is no longer necessary
to select a subset of the particles with a random number of selected
particles per class from a [2D classification| job. Instead, the algorithm is
very robust when using the entire data set of selected particles.

3.1 Running the job

Select the Select/class2d_aftersort/particles.star file on the I/O tab of

the [3D initial model | jobtype. Everything is aready in order on the [CTE . Fill

in the |optimisation tab as follows (leave the defaults for the angular and offset
sampling):

® Number of classes 1

(Sometimes, using more than one class may help in providing a ’sink’ for
sub-optimal particles that may still exist in the data set. The additional
argument --sgd_skip_anneal may then also be useful. In this case, we
will just use a single class in order to speed up things).

® Mask diameter (A) 200

(The same as before).
® Flatten and enforce non-negative solvent Yes
e Symmetry Ci1

(If you don’t know what the symmetry is, it is probably best to start with
a C1 reconstruction. Also, some higher-symmetry objects may be easier
to solve by SGD in C1 than in their correct space group. This data set is
great data, and would also work in the correct point group D2. However,
to illustrate how to proceed from C1 to D2, we will run the SGD in C1.)

29

Typically, in first instance one would not change anything on the SGD tab,
as the default are suitable for many cases. However, in order to speed things
up for this tutorial, we will only perform half the default number of iterations.
Therefore change:

e Number of initial iterations 25
® Number of in-between iterations 100
® Number of final iterations 25

On the Compute tab, optimise things for your system. You may well be able to
pre-read the few thousand particles into RAM again. GPU acceleration will also
yield speedups, though multiple maximisation steps during each iteration will
slow things down compared to standard 2D or 3D refinements or classifications.
We used an alias of symC1 for this job. Using 4 GPU cards, 5 MPI processes
and 6 threads per MPI process, this run took approximately 15 minutes on
our system. If you didn’t get that coffee before, perhaps now is a good time
too...

3.2 Analysing the results

Look at the output volume (InitialModel/job017/run_it150_class001.mrc)
with a 3D viewer like UCSF Chimera. If you recognise additional point group
symmetry at this point, then you will need to align the symmetry axes with the
main X,Y,Z axes of the coordinate system, according to RELION’s conventions.
Release 3.0 contains a new program to facilitate this. Run it as follows from the
command line:

relion_align_symmetry --i InitialModel/job017/run_it150_class001.mrc \
--0 InitialModel/job017/run_it150_class001_alignD2.mrc --sym D2

And after confirming in UCSF Chimera or relion_display that the symmetry
axes in the map are now indeed aligned with the X, Y and Z-axes, we can now
impose D2 symmetry using:

relion_image_handler --i InitialModel/job017/run_it150_class001_alignD2.mrc \
--o InitialModel/job017/run_it150_class001_symD2.mrc --sym D2

The output map of the latter command should be similar to the input map.
You could check this by:

relion_display --i InitialModel/job017/run_it150_class001_alignD2.mrc &
relion_display --i InitialModel/job017/run_it150_class001_symD2.mrc &

30

4 Unsupervised 3D classification

All data sets are heterogeneous! The question is how much you are willing to
tolerate. RELION’s 3D multi-reference refinement procedure provides a powerful
unsupervised 3D classification approach.

4.1 Running the job
Unsupervised 3D classifcation may be run from the job-type.

On the I/O tab set:
e Input images STAR file: Select/class2d_aftersort/particles.star
® Reference map: InitialModel/job017/run_it150_class001_symD2.mrc

(Note that this map does not appear in the Browse button as it is not part
of the pipeline. You can either type it’s name into the entry field, or first
import the map using the jobtype. Also note that, because we
wil be running in symmetry C1, we could have also chosen to use the non-
symmetric InitialModel/job017/run_it150_class001.mrc. However,
already being in the right symmetry setting is more convenient later on.)

e Reference mask (optional):

(Leave this empty. This is the place where we for example provided
large /small-subunit masks for our focussed ribosome refinements. If left
empty, a spherical mask with the particle diameter given on the Optimisation
tab will be used. This introduces the least bias into the classification.)

On the [Reference tab set:
® Ref. map is on absolute greyscale: Yes

(Given that this map was reconstructed from this data set, it is already on
the correct greyscale. Any map that is not reconstructed from the same
data in RELION should probably be considered as not being on the correct
greyscale.)

e Initial low-pass filter (A): 50

(One should NOT use high-resolution starting models as they may intro-
duce bias into the refinement process. As also explained in [12], one should
filter the initial map as much as one can. For ribosome we often use 70A,
for smaller particles we typically use values of 40-60A.)

e Symmetry: Ci1

(Although we know that this sample has D2 symmetry, it is often a good
idea to perform an initial classification without any symmetry,

31

so bad particles, which are not symmetry, can get separated from proper
ones, and the symmetry can be verified in the reconstructed maps.)

On the CTFE tab set:
® Do CTF correction? Yes
® Has reference been CTF-corrected? Yes
(As this model was made using CTF-correction in the SGD.)
e Have data been phase flipped? No

® Ignore CTFs until first peak? No

(Only use this option if you also did so in the [2D classification| job that

you used to create the references.)
On the Optimisation tab set:
® Number of classes: 4

(Using more classes will divide the data set into more subsets, potentially
describing more variability. The computational costs scales linearly with
the number of classes, both in terms of CPU time and required computer
memory.)

® Number of iterations: 25
(We typically do not change this.)
® Regularisation parameter T: 4

For the exact definition of T, please refer to [13]. For cryo-EM 2D classi-
fication we typically use values of T=1-2, and for 3D classification values
of 2-4. For negative stain sometimes slightly lower values are better. In
general, if your class averages appear noisy, then lower T; if your class av-
erages remain too-low resolution, then increase T. The main thing isto be
aware of overfitting high-resolution noise. We happened to use a value of
2 in our pre-calculated results. Probably a value of 4 would have worked
equally well...

® Mask diameter (A): 200

(Just use the same value as we did before in the [2D classification | job-type.)
® Mask individual particles with zeros? Yes
e Limit resolution E-step to (A): -1

(If a positive value is given, then no frequencies beyond this value will be
included in the alignment. This can also be useful to prevent overfitting.
Here we don’t really need it, but it could have been set to 10-15A anyway.)

32

On the [Sampling tab one usually does not need to change anything (only for
large and highly symmetric particles, like icosahedral viruses, does one typically
use a 3.7 degree angular sampling at this point). Ignore the Helix tab, and fill in

the Compute tab like you did for the previous |2D-classification|. Again, on the

Running tab, one may specify the Number of MPI processors and threads to
use. As explained for the job-type, 3D classification takes more
memory than 2D classification, so often more threads are used. However, in this
case the images are rather small and RAM-shortage may not be such a big issue.
Perhaps you could use an alias like first_exhaustive, to indicate this is our
first 3D classification and it uses exhaustive angular searches? On our computer
with 4 GPUs, 5 MPIs and 6 threads, this calculation took approximately 10
minutes.

When analysing the resulting class reconstructions, it is extremely useful to
also look at them in slices, not only as a thresholded map in for example UCSF
Chimera. In the slices view you will get a much better impression of unresolved
heterogeneity, which will show up as fuzzy or streaked regions in the slices.
Slices also give a good impression of the flatness of the solvent region. Use the
Display: button and select any of the reconstructions from the last iteration to
open a slices-view in RELION.

When looking at your rendered maps in 3D, e.g. using UCSF Chimera, it is often
a good idea to fit them all into the best one, as maps may rotate slightly during
refinement. In Chimera, we use the Tools -> Volume Data -> Fit in Map
tool for that. For looking at multiple maps alongside each other, we also like the

Tools -> Structure Comparison -> Tile Structures tool, combined with
the independent center-of-rotation method on the Viewing window.

As was the case for the 2D classification, one can again use the [Subset selection

to select a subset of the particles assigned to one or more classes. On the I/O
tab select the _model.star file from the last iteration. The resulting display
window will show central slices through the 4 refined models. Select the best
classes, and save the corresponding particles using the right-mouse pop-up menu.
Use an alias like class3d_first_exhaustive.

4.2 Analysing the results in more detail

Again, if you are in a hurry to get through this tutorial, you can skip this sub-
section. It contains more detailed information for the interested reader.

The output files are basically the same as for the 2D classification run (we're
actually using the same code for 2D and 3D refinements). The only differ-
ence is that the map for each class is saved as a separate MRC map, e.g.
run_it025_class007.mrc, as opposed to the single MRC stack with 2D class
averages that was output before.

As before, smaller classes will be low-pass filtered more strongly than large

33

classes, and the spectral signal-to-noise ratios are stored in the data_model_class_N
tables (with N = 1,...,K) of the _model.star files. Perhaps now is a good
time to introduce two handy scripts that are useful to extract any type of data
from STAR files. Try typing:

relion_star_printtable Class3D/first_exhaustive/run_it025_model.star
data_model_class_1 rlnResolution rlnSsnrMap

It will print the two columns with the resolution (rlnResolution) and the
spectral signal-to-noise ratio (rlnSsnrMap) from table data_model_class_1 to
the screen. You could redirect this to a file for subsequent plotting in your
favourite program. Alternatively, if gnuplot is installed on your system, you
may type:

relion_star_plottable Class3D/first_exhaustive/run_it025_model.star
data_model_class_1 rlnResolution rlnSsnrMap

To check whether your run had converged, (as mentioned above) you could also
monitor:

grep _rlnChangesOptimalClasses Class3D/first_exhaustive/run_it?7?7_optimiser.star

As you may appreciate by now: the STAR files are a very convenient way of han-
dling many different types of input and output data. Linux shell commands like
grep and awk, possibly combined into scripts like relion_star_printtable,
provide you with a flexible and powerful way to analyze your results.

5 High-resolution 3D refinement

Once a subset of sufficient homogeneity has been selected, one may use the
procedure in RELION to refine this subset to high resolution in
a fully automated manner. This procedure employs the so-called gold-standard
way to calculate Fourier Shell Correlation (FSC) from independently refined
half-reconstructions in order to estimate resolution, so that self-enhancing over-
fitting may be avoided [15]. Combined with a procedure to estimate the accuracy
of the angular assignments [14], it automatically determines when a refinement
has converged. Thereby, this procedure requires very little user input, i.e. it
remains objective, and has been observed to yield excellent maps for many data
sets. Another advantage is that one typically only needs to run it once, as there
are hardly any parameters to optimize.

However, before we start our high-resolution refinement, we should first re-
extract our current set of selected particles with less down-scaling, so that we
can potentially go to higher resolution. To do this, go to the [Particle extraction |
jobtype on the GUI, and on the 1/O tab give:

e micrograph STAR file: CtfFind/job003/micrographs_ctf.star

34

(This should still be there.)

® Coordinate-file suffix:
(Leave this empty now.)

® 0OR re-extract refined particles? Yes

e Refined particles STAR file: Select/class3d_first_exhaustive/particles.star
(Now, we will use only the refined subset of selected particles.)

® Re-center refined coordinates? Yes

(This will re-center all the particles according to the aligned offsets from

the |3D classification| job above.)

® Recenter on - X, Y, Z (pix) 0 0 O
(We want to keep the centre of the molecule in the middle of the box.)
® Manually set pixel size? No

(This is only necessary when the input micrograph STAR file does NOT
contain CTF information.)

And on the lextract tab, we keep everything as it was, except:
e Particle box size (pix) 360

(we will use a larger box, so that de-localised CTF signals can be better
modeled. This is important for the CTF refinement later on.)

® Rescale particles? Yes

(to prevent working with very large images, let’s down-sample to a pixel
size of 360%0.885/256=1.244 A. This will limit our maximum achievable
resolution to 2.5 A, which is probably enough for such a small data set.)

We used the alias best3dclass_bigbox for this job.

In addition, we will need to rescale the best map obtained thus far to the 256-
pixel box size. This is done from the command-line:

relion_image_handler --i Class3D/job018/run_it025_class001.mrc --angpix 3.54 \
—--rescale_angpix 1.244 --o Class3D/job018/run_it025_class001_box256.mrc --new_box 256

5.1 Running the auto-refine job
On the I/O tab of the job-type set:

e Input images STAR file: Extract/best3dclass_fullsize/particles.star

e Reference map: Class3D/job018/run_it025_class001_box256.mrc

35

e Reference mask (optional):
(leave this empty for now)
On the Reference tab, set:
® Ref. map is on absolute greyscale? No

(because of the different normalisation of down-scaled images, the rescaled
map is no longer on the correct absolute grey scale. Setting this option
to 'No’ is therefore important, and will correct the greyscale in the first
iteration of the refinement.)

e Initial low-pass filter (A) 50

(We typically start auto-refinements from low-pass filtered maps to pre-
vent bias towards high-frequency components in the map, and to maintain
the “gold-standard” of completely independent refinements at resolutions
higher than the initial one.)

® Symmetry D2

(We now aim for high-resolution refinement, so imposing symmetry will
effectively quadruple the number of particles.)

Parameters on the CTE , Optimisation and Auto-sampling tabs remain the same
as they were in the job. Note that the orientational sampling
rates on the Sampling tab will only be used in the first few iterations, from there
on the algorithm will automatically increase the angular sampling rates until
convergence. Therefore, for all refinements with less than octahedral or icosa-
hedral symmetry, we typically use the default angular sampling of 7.5 degrees,
and local searches from a sampling of 1.8 degrees. Only for higher symmetry
refinements, we use 3.7 degrees sampling and perform local searches from 0.9
degrees.

As the MPI nodes are divided between one master (who does nothing else than
bossing the others around) and two sets of slaves who do all the work on the
two half-sets, it is most efficient to use an odd number of MPI processors, and
the minimum number of MPI processes for jobs is 3. Memory
requirements may increase significantly at the final iteration, as all frequencies
until Nyquist will be taken into account, so for larger sized boxes than the
ones in this test data set you may want to run with as many threads as you
have cores on your cluster nodes. Perhaps an alias like first3dref would be
meaningful?

5.2 Analysing the results
Also the output files are largely the same as for the job. How-

ever, at every iteration the program writes out two run_it077?_half?_model.star

36

and two run_it077_half?_class001.mrc files: one for each independently re-
fined half of the data. Only upon convergence a single run_model.star and
run_class001.mrc file will be written out (without _it0?? in their names).
Because in the last iteration the two independent half-reconstructions are joined
together, the resolution will typically improve significantly in the last iteration.
Because the program will use all data out to Nyquist frequency, this iteration
also requires more memory and CPU.

Note that the automated increase in angular sampling is an important aspect
of the auto-refine procedure. It is based on signal-to-noise considerations that
are explained in [14], to estimate the accuracy of the angular and translational
assignments. The program will not use finer angular and translational sampling
rates than it deems necessary (because it would not improve the results). The
estimated accuracies and employed sampling rates, together with current reso-
lution estimates are all stored in the _optimiser.star and _model.star files,
but may also be extracted from the stdout file. For example, try:

grep Auto Refine3D/first3dref/run.out

6 Mask creation & Postprocessing

After performing a 3D auto-refinement, the map needs to be sharpened. Also,
the gold-standard FSC curves inside the auto-refine procedures only use un-
masked maps (unless you've used the option Use solvent-flattened FSCs).
This means that the actual resolution is under-estimated during the actual re-
finement, because noise in the solvent region will lower the FSC curve. RE-
LION’s procedure for B-factor sharpening and calculating masked FSC curves
[2] is called “post-processing”. First however, we’ll need to make a mask to
define where the protein ends and the solvent region starts. This is done using

the job-type.

6.1 Making a mask
On the I/O tab, select the output map from the finished 3D auto-refine job:
Refine3D/first3dref/run_class001.mrc. On the Mask tab set:
e Lowpass filter map (A): 15
(A 15A low-pass filter seems to be a good choice for smooth solvent masks.)
e Pixel size (A): 1.244
(This value will only be used to calculate the low-pass filter.)

® Initial binarisation threshold: 0.005

37

(This should be a threshold at which rendering of the low-pass filtered
map in for example Chimera shows absolutely no noisy spots outside
the protein area. Move the threshold up and down to find a suitable
spot. Remember that one can use the command-line program called
relion_image_handler with the options --lowpass 15 --angpix 1.244
to get a low-pass filtered version of an input map. Often good values for
the initial threshold are around 0.01-0.04.)

® Extend binary map this many pixels: O

(The threshold above is used to generate a black-and-white mask. The
white volume in this map will be grown this many pixels in all directions.
Use this to make your initial binary mask less tight.)

® Add a soft-edge of this many pixels: 6

(This will put a cosine-shaped soft edge on your mask. This is important,
as the correction procedure that measures the effect of the mask on the
FSC curve may be quite sensitive to too sharp masks. As the mask gen-
eration is relatively quick, we often play with the mask parameters to get
the best resolution estimate.)

Ignore the Helix tab and use an alias like first3dref. Note that as of release
3.0, you can run the mask_create program with multiple threads to accelerate
this step. You can look at slices through the resulting mask using the Display:
button, or you can load the mask into UCSF Chimera. The latter may be a
good idea, together with the map from the auto-refine procedure, to confirm that
the masks encapsulates the entire structure, but does not leave a lot of solvent
inside the mask. You can continue the same job with new settings for the mask
generation until you have found a mask you like. Each time you continue the
job, the old mask will be copied to a file named mask.mrc.old.

6.2 Postprocessing

Now select the job-type, and on the T/O tab, set:

® (One of the 2 unfiltered half-maps:
Refine3D/first3dref/run_halfl class001 unfil.mrc

® Solvent mask: MaskCreate/first3dref/mask.mrc
e Calibrated pixel size (A): 1.244

(Sometimes you find out when you start building a model that what you
thought was the correct pixel size, in fact was off by several percent. Inside
RELION, everything up until this point was still consistent. so you do not
need to re-refine your map and/or re-classify your data. All you need to
do is provide the correct pixel size here for your correct map and final
resolution estimation.)

38

On the Sharpen tab, set:
® MTF of the detector (STAR file): mtf k2 300kV.star

(You can download a few commonly curves from the
Analyse results entry on the RELION wiki. At 200kV the MTF of the K2
is similar to the one at 300kV.)

® Estimate B-factor automatically: Yes

(This procedure is based on the [10] paper and will therefore need the final
resolution to extend significantly beyond 10 A. If your own map does not
reach that resolution, you may want to use your own “ad-hoc” B-factor
instead.)

® Lowest resolution for auto-B fit (A): 10
(This is usually not changed.)

e Use your own B-factor? No

On the [Filter tab, set:
e Skip FSC-weighting? No

(This option is sometimes useful to analyse regions of the map in which
the resolution extends beyond the overall resolution of the map. This is
not the case now.)

Run the job (no need for a cluster, as this job will run very quickly) and use an
alias like first3dref. Using the Display button, you can display slizes through
the postprocessed map and a PDF with the FSC curves and the Guinier plots for
this structure. You can also open the PostProcess/first3dref/postprocess.mrc
map in Chimera, where you will see that it is much easier to see where all the
alpha-helices are then in the converged map of the 3D auto-refine procedure.
The resolution estimate is based on the phase-randomization procedure as pub-
lished previously [2]. Make sure that the FSC of the phase-randomized maps
(the red curve) is more-or-less zero at the estimated resolution of the postpro-
cessed map. If it is not, then your mask is too sharp or has too many details.
In that case use a stronger low-pass filter and/or a wider and more softer mask
in the step above, and repeat the postprocessing. Actually, you
may want to make the mask you just made a bit softer, so perhaps try an edge
of 5 pixels as well? If you use the Continue now button for that, the previous
results will be overwritten. Click on the job-type browser on the left to generate
a [Rumnow! button, which will create a new output directory.

39

http://www2.mrc-lmb.cam.ac.uk/relion/index.php/Analyse_results

7 CTF and beamtilt refinement

As of release 3.0, RELION contains a program to estimate per-particle defocus
values and beamtilt values for the entire data set. This is implemented in the

CTF refinement | job-type. This can lead to further improvements in resolution
at a relatively minor computational cost. It runs from a previous

job as well as a corresponding | Post-processing| job.

7.1 Running the job
On the I/O tab of job-type on the GUI the set:

e Particles (from Refine3D) Refine3D/first3dref/run_data.star

e Postprocess STAR file: PostProcess/first3dref/postprocess.star

On the Fit tab set:
e Minimum resolution for fits (A): 30
(just leave the default.)
® Perform CTF parameter fitting? Yes

(We are interested in re-estimating the defocus of each particle. This will
account for non-horizontal ice layers, and particles at the top or bottom
of the ice layer.)

e Range for defocus fit (A) 2000
(usually, the default value works fine)
® Fit per-micrograph astigamtism? No
(this only works with very strong data)
e Fit per-particle astigamtism? No
(this only works with very, very strong data)
® Fit per-micrograph phase-shift No

(this is only useful for phase-plate images, and even there may be cum-
bersome if the data is not very strong. Carefully monitor the results of
these fits...)

® Perform beamtilt estimation? Yes

(this will estimate the beamtilt (in X and Y directions) from the entire
data set.)

This program is only implemented on the CPU. Using 4 MPIs, each with 8
threads, on our computer, this job finished in approximately one minute.

40

7.2 Analysing the results

You can analyse the refined defoci by selecting the logfile.pdf file from the
Display: button on the GUIL. Can you spot micrographs where the ice layer was
not horizontal?

The beamtilt estimate is stored in the file CtfRefine/job024/beamtilt_0.txt;
the image with the phase differences from which this estimate was derived can
be displayed using:

relion_display --i CtfRefine/job024/beamtilt_delta-phase_per-pixel.mrc --scale 3 &
and the model fitted through it can be displayed using:
relion_display --i CtfRefine/job024/beamtilt_delta-phase_lin-fit.mrc --scale 3 &

If the beamtilt was significant, this image will show one side of the circle blacker
and one side whiter than the rest. In this case, the beamtilt was estimated
to be approximately 0 mrad in X and -0.2 mrad in Y. At the resolution of
these data, that does not make a significant difference. One could re-run the

job without beam-tilt estimation. We chose just to move on with

it instead.

8 Bayesian polishing

As of release 3.0, RELION also implements a new Bayesian approach to beam-
induced motion correction. This approachs aims to optimise a regularised likeli-
hood, which allows us to associate with each hypothetical set of particle trajec-
tories a prior likelihood that favors spatially coherent and temporally smooth
motion without imposing any hard constraints. The smoothness prior term re-
quires three parameters that describe the statistics of the observed motion. To
estimate the prior that yields the best motion tracks for this particular data
set, we can first run the program in ’training mode’. Once the estimates have
been obtained, one can then run the program again to fit tracks for the motion
of all particles in the data set and to produce adequately weighted averages of
the aligned movie frames.

8.1 Running in training mode

Using 16 threads in parallel, this job took 1 hour and 15 minutes on our com-
puter. If you do not want to wait for this, you can just proceed to section 8.2
and use the sigma-values from our precalculated results, which are already given
in that section.

If you do want to run this job yourself, on the 1/O tab of the |Bayesian polishing
job-type set:

41

Micrographs (from MotionCorr): MotionCorr/own/corrected micrographs.star

(It is important that this [Motion correction| job has been run in RELION-
3.0, or above. [Motion correction| jobs run RELION-2.1 or below will NOT
work, as required metadata about the motion correction is not written
out.

e Particles (from Refine3D or CtfRefine): CtfRefine/job024/particles_ctf refine.star
(These particles will be polished)
® Postprocess STAR file PostProcess/first3dref/postprocess.star

(the mask and FSC curve from this job will be used in the polishing
prceodure.)

e First movie frame: 1
e Last movie frame: -1

(Some people throw away the first or last frames from their movies. Note
that this is not recommended when performing Bayesian polishing in
RELION. The B-factor weighting of the movie frames will automatically
optimise the signal-to-noise ratio in the shiny particles, so it is best to
include all movie frames.)

On the Train tab set:
® Train optimal parameters? Yes
® Fraction of Fourier pixels for testing: 0.5
(just leave the default here)
® Use this many particles: 5000

(that’s almost all we have anyway. Note that the more particles, the more
RAM this program will take. If you run out of memory, try training
with fewer particles. Using much fewer than 5000 particles is not recom-
mended.)

On the Polish tab make sure you set:
® Perform particle polishing? No

Note that the training step of this program has not been MPI-parallelised.
Therefore, make sure you use only a single MPI process. We ran the program
with 16 threads to speed it up. Still, the calculation took more than 1 hour.
We used an alias of train.

42

8.2 Running in polishing mode

Once the training step is finished, the program will write out a text file called
Polish/train/opt_params.txt. To use these parameters to polish your par-
ticles, click on the job-type menu on the left to select a new |Bayesian polishing‘

job. Keep the parameters on the T/O tab the same as before, and on the Train
tab, make sure you switch the training off. Then, on the Polish tab set:

® Perform particle polishing? Yes
e Optimised parameter file: Polish/train/opt_params.txt
e (OR use your own parameters? No
® Minimum resolution for B-factor fit (A): 20
e Maximum resolution for B-factor fit (A): -1
(just leave the defaults for these last two parameters)

Alternatively, if you decided to skip the training set, then you can fill in the
Polish tab with the sigma-parameters that we obtained in our run:

® Perform particle polishing? Yes
® (Optimised parameter file:
(leave this empty to use the optimal parameters we got as per below.)
e (OR use your own parameters? Yes
e Sigma for velocity (A/dose) 0.462
e Sigma for divergence (A) 1935
e Sigma for acceleration (A/dose) 2.46
® Minimum resolution for B-factor fit (A): 20
® Maximum resolution for B-factor fit (A): -1
(just leave the defaults for these last two parameters)

This part of the program is MPI-parallelised. Using 3 MPI processes, each with
16 threads, our run finished in two minutes. We used an alias of polish.

8.3 Analysing the results

The ’Bayesian polishing ‘ job outputs a STAR file with the polished particles called
shiny.star and a PDF logfile. The latter contains plots of the scale and B-
factors used for the radiation-damage weighting, plus plots of the refined particle
tracks for all included particles on all micrographs. Looking at the plots for this

43

data set, it appeared that the stage was a bit drifty: almost all particles move
from the top right to the bottom left during the movie.

After polishing, the signal-to-noise ratio in the particles has improved, and one

should submit a new job and a corrsponding

job. We chose to run the job with the shiny particles using the
following option on the I/O tab:

e Reference mask (optional): MaskCreate/first3dref/mask.mrc

(this is the mask we made for the first job. Using this

option, the solvent will be set to zero for all pixels outside the mask.
This reduces noise in the reference, and thus lead to better orientation
assignments and thus reconstructions.)

and this option on the Optmisation tab:
® Use solvent-flattened FSCs? Yes

(Using this option, the refinement will use a solvent-correction on the
gold-standard FSC curve at every iteration, very much like the one used
in the job-type. This option is particularly useful when
the protein occupies a relatively small volume inside the particle box,
e.g. with very elongated molecules, or when one focusses refinement on a
small part using a mask. The default way of calculating FSCs in the 3D
auto-refinement is without masking the (gold-standard) half-maps, which
systematically under-estimates the resolution during refinement. This is
remediated by calculating phase-randomised solvent-corrected FSC curves
at every iteration, and this generally leads to a noticeable improvement in
resolution.)

As you can see in the pre-calculated results, we obtained a final resolution just
beyond 2.9 A. Not bad for 3GB of data, right?

8.4 When and how to run CTF refinement and Bayesian
polishing

Both Bayesian polsihing and CTF refinement, which comprises per-particle defo-
cus and beam tilt estimation, may improve the resolution of the reconstruction.
This raises a question of which one to apply first. In this example, we first
refined the per-particle defocus values and the beam tilt, but we could have also
performed the Bayesian polishing first. Both approaches benefit from higher
resolution models, so an iterative procedure may be beneficial. For example,
one could repeat the CTF refinement after the Bayesian polishing. In general,
it is probably best to tackle the biggest problem first, and some trial and error
may be necessary.

44

Moreover, we have seen for some cases that the training produces inconsistent
results: i.e. multiple runs yield very different sigma values. However, we have
also osberved that often the actual sigma values used for the polishing do not
matter much for the resolution of the map after re-refining the shiny particles.
Therefore, and also because the training is computationally expensive, it may
be just as well to run the polishing directly with the default parameters (oo =
0.2; 04iv = 5000; 04cc = 2), i.e. without training for your specific data set.

9 Local-resolution estimation

The estimated resolution from the post-processing program is a global estimate.
However, a single number cannot describe the variations in resolution that are
often observed in reconstructions of macromolecular complexes. Alp Kucukelbir
and Hemant Tagare wrote a nifty program to estimate the variation in resolution

7

throughout the map [7]. RELION implements a wrapper to this program through

the job-type. Alternatively, one can choose to run a post-

processing-like procedure with a soft spherical mask that is moved around the
entire map. In the example below, we use the latter.

9.1 Running the job

On the I/O tab set:

® (One of the two unfiltered half-maps:
Refine3D/polished/run_halfl class001_unfil.mrc

e User-provided solvent mask: MaskCreate/first3dref/mask.mrc
® Calibrated pixel size: 1.244

(Sometimes you find out when you start building a model that what you
thought was the correct pixel size, in fact was off by several percent. Inside
RELION, everything up until this point was still consistent. so you do not
need to re-refine your map and/or re-classify your data. All you need to
do is provide the correct pixel size here for your correct map and final
resolution estimation.)

On the ResMap tab set Use ResMap? to No; on the Relion tab set:
e Use Relion? Yes
® User-provided B-factor: -30

(This value will be used to also calculate a locally-filtered and sharpened
map. Probably you want to use a value close to the one determined

automatically during the job.)

45

e MTF of the detector (STAR file): mtf k2 300kV.star

(The same as for the job.)

9.2 Analysing the results

We used polished as an alias. Running with 8 MPI processes, this job took ap-
proximately 7 minutes. The output is a file called LocalRes/polished/relion_locres.mrc
that may be used in UCSF Chimera to color the Postprocess/polished/postprocess.mrc
map according to local resolution. This is done using Tools ->Volume data ->

Surface color, and then select by volume data value and browse to the

resmap file.

Unique to the RELION option is the additional output of a locally-filtered (and

sharpened map), which may be useful to describe the overall variations in map

quality in a single map. This map is saved as LocalRes/polished/relion_locres_filtered.mrc
and can be visualised directly in UCSF Chimera (and optionally also coloured

by local resolution as before).

10 Checking the handedness

Careful inspection of the map may indicate that the handedness is incorrect,
e.g. because the a-helices turn the wrong way around. Remember that it is
impossible to determine absolute handedness from a data set without tilting the
microscopy stage. The SGD algorithm in the jobtype therefore
has a 50% chance of being in the opposite hand. In our precalculated results,
this is indeed the case. One may flip the handedness of the postprocessed map
as follows:

relion_image_handler --i PostProcess/polished/postprocess.mrc \
--o PostProcess/polished/postprocess_invert.mrc --invert_hand

The same command could also be run on any of the other maps. If one realises
earlier on in the image processing procedure that the hand is wrong, one could
of course also switch to the other hand earlier on. For RELION itself it doesn’t
matter, as both hands cannot be distinguished, but it may be more convenient
to flip the hand as soon as you notice it.

Once in the correct hand, you might want to load the map into UCSF Chimera
and superimpose it with an atomic model for g-galactosidase. You could try
fetching one straight from the PDB using PDB-ID 5ala.

46

11 Wrapping up

11.1 Making a flowchart

Do you wonder how you got to your final reconstruction? Select the last job

you performed from the |Finished jobs| list and try the Make flowchart option

from the Job actions button. You’ll need KTEX and the TikZ package on your
system in order for this to work. On the first page will be an overview flowchart
without the exact job names, which may be useful for publication purposes
(perhaps after editing it in your favourite vector-based design program). After
the overview flowchart, the first detailed flowchart shows you the path how you
got to this end. Note that flowcharts longer than 10 steps will be cut into pieces.
There may be branches in your work flow. Therefore, following the flowchart
of your last job, there will also be flowcharts for each branch. You can click on
the links to get to the corresponding position in the PDF file.

11.2 Cleaning up your directories

In order to save disk space, RELION has an option to clean up job directories.
There are two modes of cleaning: ’gentle’ cleaning will only delete interme-
diate files from the job directory being cleaned; "harsh’ cleaning also deletes
files that may be necessary to launch a new job that needs input from the job
being cleaned. For example, harsh cleaning will remove averaged micrographs
from a job, or extracted particles stacks from a [Particle extraction]
job, while gentle cleaning will remove all files from itermediate iterations of
[2D classification], [3D classification| or [3D auto-refine] jobs. You can clean indi-
vidual jobs from the Job actions button; or you can clean all jobs from the ’Jobs’
pull-down menu at the top of the GUL. We used the ’Gently clean all jobs’ op-
tion from that menu before making a tarball of the project directory that we
distributed as our precalculated results. You might want to gently clean your
project directory before you put your data in long-term storage.

11.3 Asking questions and citing us

That’s it! Hopefully you enjoyed this tutorial and found it useful. If you have
any questions about RELION, please first check the FAQ on the RELION Wiki and
the CCPEM mailing list. If that doesn’t help, use the CCPEM list for asking
your question. Please, please, please, do not send a direct email to Sjors, as he
can no longer respond to all of those.

If RELION turns out to be useful in your research, please do cite our papers and
tell your colleagues about it.

47

http://www2.mrc-lmb.cam.ac.uk/groups/scheres/publications.html

11.4 Further reading

The theory behind the refinement procedure in RELION is described in detail
in:

e S.H.W. Scheres (2012) "RELION: Implementation of a Bayesian approach to
cryo-EM structure determination” J. Struc. Biol., 180, 519-530.

e S.H.W. Scheres (2012) ” A Bayesian view on cryo-EM structure determination”
J. Mol. Biol., 415, 406-418.

A comprehensive overview of how to use RELION is described in:

e S.H.W. Scheres (2016) ”Processing of structurally heterogeneous cryo-EM data
in RELION” Meth. Enzym., 579, 125-157.

48

12 Appendix A: notes on installation

12.1 Install MPI

Note that you’ll need a computing cluster (or a multi-core desktop machine
with NVIDIA GPUs) with an MPI (message passing interface) installation. To
compile RELION, you'll need a mpi-devel package. The exact flavour (openMPI,
MPICH, LAM-MPI, etc) or version will probably not matter much. If you don’t
have an mpi-devel installation already on your system, we recommend installing
openMPI.

12.2 Install CUDA

If you have a relatively modern GPU from NvIDIA (with compute capability
3.5+), then you can accelerate your autopicking, classification and refinement
jobs considerably. In order to compile RELION with GPU-acceleration support,
you'll need to install cUDA. We used cUDA-8.0 to prepare this tutorial. Down-
load it from NVIDIA’s website.

12.3 Imnstall RELION

RELION is open-source software. Download it for free from the RELION wiki,
and follow the installation instructions. If you’re not familiar with your job
submission system (e.g. Sun Grid Engine, PBS/TORQUE, etc), then ask your
system administrator for help in setting up the gsub.csh script as explained
in the installation instructions. Note that you will probably want to run so-
called hybridly-parallel jobs, i.e. calculations that use both MPI for distributed-
memory parallelization AND pthreads for shared-memory parallelization. Your
job submission queueing system may require some tweaking to allow this. Again,
ask your sysadmin for assistance.

12.4 Install motion-correction software

RELION-3.0 provides a wrapper to the UCSF program MOTIONCOR2, which is
used for whole-frame micrograph movie-alignment [21]. Download the program
from David Agard’s page and follow his installation instructions. Alternatively,
you may also use RELION’s own (CPU-only) implementation of MOTIONCOR2,
so don’t worry if you have trouble installing the UCSF implementation. Note
that, as of version 3.0, the wrapper to UNBLUR [4] from Niko grigorieff’s group
has been discontinued from the GUI.

49

http://www.open-mpi.org/
https://developer.nvidia.com/cuda-downloads
http://www2.mrc-lmb.cam.ac.uk/relion/index.php/Download_%26_install
http://msg.ucsf.edu/em/software/motioncor2.html

12.5 Install CTF-estimation software

CTF estimation is not part of RELION. Instead, RELION provides a wrapper to
Alexis Rohou and Niko Grigorieff’s ¢TFFIND4 [9]. Please download this from
Niko’s CTFFIND website and follow his installation instructions. Alternatively,
if you have NVIDIA graphics cards (GPUs) in your machine, you may also use Kai
Zhang’s GCTF [20], which may be downloaded from Kai’s website at LMB.

12.6 Install RESMAP

Local-resolution estimation may be performed inside RELION’s own postpro-
cessing program, or through a wrapper to Alp Kucukelbir’s RESMAP [7]. Please
download it from Alp’s RESMAP website and follow his installation instructions.

50

http://grigoriefflab.janelia.org/ctf
http://www.mrc-lmb.cam.ac.uk/kzhang/
http://resmap.sourceforge.net/

13 Appendix B: using RELION

13.1 The GUI

13.1.1 A pipeline approach

The GUI serves a central role in it’s pipelined approach, details of which have
been published in the 2016 Proceedings of the CCP-EM Spring Symposium [3].
We recommend to create a single directory per project, i.e. per structure you
want to determine. We call this the project directory. It is important to al-
ways launch the relion graphical user-interface (GUI), by typing the command
relion, from the project directory.

The GUI keeps track of all jobs and how output from one job is used as input
for another, thereby forming a workflow or pipeline. Each type of job has its
own output directory, e.g. Class2D/, and inside these job-type directories, new
jobs get consecutive numbers, e.g. Class2D/job010. Inside these individual job
directories, output names are fixed, e.g. Class2D/job010/run. To provide a
mechanism to have more meaningful names for jobs, a system of job “aliases”
is used, which are implemented as symbolic links to the individual job direc-
tories on the filesystem. All info about the pipeline is stored in a file called
default_pipeline.star, but in normal circumstances the user does not need
to look into this file. In case this file gets corrupted, one can copy back a backup
of this file from the last executed job directory.

13.1.2 The upper half: jobtype-browser and parameter-panel

On the left of the upper half of the GUI is the jobtype-browser: a vertical

list of jobtypes, e.g. [2D classification|. On the right is a panel with multiple

tabs, where parameters to the different types of jobs may be input. On the top
left of the GUI are three different menu’s, providing a range of functionalities.
The [Schedulel and [Rummow!] buttons can be used to schedule jobs for future
execution, or to execute them now. The former is particularly useful in preparing
fully automated “pipelines” that can be run iteratively, for example in real-time
as data is being collected. See section 13.3 for more details. By clicking in the
jobtype-browser on the left-hand side of the GUI, a new job (with a [Rinnow!
button) will be loaded in the parameter-panel on the right.

13.1.3 The lower half: job-lists and stdout/stderr windows

The lower half of the GUT contains lists of jobs that are still running (),

have already finished (|Finished jobs|), or are scheduled for later execution
(|Scheduled jobs|). By clicking jobs in these lists, the parameters of that job

o1

https://doi.org/10.1107/S2059798316019276

will be loaded in the parameter-panel, and the [Rummow! button will change
color and turn into continue now!. Upon clicking the latter, no new output
job-directory will be made, but the job will be continued according to the pa-
rameters given in the parameter-panel. [2D classification|, [3D classifications| and
jobs will need a _optimiser.star file to continue from, and
will have filenames with the iteration from which they were continued, e.g.
run_ct23. Other types of jobs may continue from the point until they were
executed before, e.g. [Motion correction], [CTF estimation], [Auto-picking| and

[Particle Extraction| will continue by running only on those micrographs that

weren’t done before. The |Input to this job| and [Output from this job| lists link

jobs together and can be used to browse backwards or forwards in the project
history.

At the bottom of the lower half of the GUI, the standard output (stdout) and
standard error (stderr) of the selected (finished or running) job will show in black
and red text, respectively. The stderr should ideally be empty, any text here is
usually worth inspection. These text displays get updated every time you click
on a job in the job-lists. Double-clicking on the stdout or stderr displays will
open a pop-up window with the entire text for more convenient scrolling.

13.1.4 The Display button

The Display: button below the run and schedule buttons serves to visualise the
most important input and output files for each job. When a job from the job-
lists in the lower half of the GUI is selected, clicking this button will pop-up
a menu with all the input and output of this job that can be displayed (for
example, particles, micrographs, coordinates, PDF files, etc). A more general
functionality to display any (e.g. intermediate) file can be accessed through the
Display option of the File menu on the top left of the GUI.

13.1.5 The Job actions button

The Job actions button opens up a little menu with options for the selected
(running, finished or scheduled) job. Here, you can access a file called note.txt
(that is saved in every individual job directory and which may be used to store
user comments); you can change the alias of the job; you can mark a job as
finished (in case it somehow got stuck); you can make a flowchart of the history
of that job (provided IXTEX and the TikZ package are installed on your system,
also see section 11); or you can delete or clean a job to save disk space (see
below).

92

13.1.6 Clean-up to save disk space

Deletion of jobs moves the entire job directory from the project directory into
a directory called Trash/. You can empty the Trash folder from File menu on
the top left of the GUI to really free up the space. Until you do so, you can still
“undelete” jobs using the corresponding option from the Jobs menu on the top
left.

To save disk space, you can also “clean” jobs, which will move intermediate files
to the Trash folder, e.g. the files written out for all intermediate iterations of
refine jobs. There are two cleaning options: gentle clean will leave all files
intact that could be used as input into another job, while harsh clean may also
remove those. Evidently, “harsh” cleaning can free up more space, in particular
directories with particle stacks or micrographs may become large, e.g. from
[Motion correction], lParticle extraction ‘, lMovie reﬁnementl and ’Particle polishing‘
job types. Ome can also clean all directories in the project with a single click
using the corresponding options from the Jobs menu on the top left of the GUI.
You can protect specific directories from “harsh” cleaning by placing a file called
NO_HARSH_CLEAN inside them, e.g. you may want to protect your final set of
polished particles from deletion by executing:

touch Polish/job098/NO_HARSH_CLEAN

13.2 Optimise computations for your setup
13.2.1 GPU-acceleration

Dari Kimanius and Bjoern Forsberg from the group of Erik Lindahl (Stockholm)
have ported the most computationally expensive parts of RELION for the use
of GPUs. Because they used the CUDA-libraries from NVIDIA to do this, GPU-
acceleration in RELION only works with NVIDIA cards. These need to be of
compute capability 3.5 or higher. Both single and double precision cards will
work, so one is not restricted to the expensive double-precision cards, but can
use the cheaper gaming cards as well. Details of their implementation can be
found in their eLife paper|[6].

Two different relion programs have been GPU-accelerated: relion_autopick

(for) and relion_refine (for [2D classification], [3D classification |
and jobs). Both the sequential and the MPI-versions of these

programs have been accelerated.

13.2.2 Disk access

With the much improved speed of image processing provided by the GPU-
acceleration, access to the hard disk increasingly becomes a bottle neck. Several

%]

https://en.wikipedia.org/wiki/CUDA#Version_features_and_specifications
https://elifesciences.org/articles/18722

options are available on the RELION GUI to optimise disk access for your data set
and computer setup. For [2D classification], [3D initial model], [3D classification]
and one can choose to use parallel disc I/0. When set to
Yes, all MPI processes will read particles simultaneously from the hard disk.
Otherwise, only the master will read images and send them through the network
to the slaves. Parallel file systems like gluster of fhgfs are good at parallel disc
I/0. NFS may break with many slaves reading in parallel.

One can also set the number of pooled particles. Particles are processed in
individual batches by MPI slaves. During each batch, a stack of particle images
is only opened and closed once to improve disk access times. All particle images
of a single batch are read into memory together. The size of these batches is at
least one particle per thread used. This parameter controls how many particles
are read together in a batch by each thread. If it is set to 3 and one uses 8
threads, batches of 3x8=24 particles will be read together. This may improve
performance on systems where disk access, and particularly metadata handling
of disk access, is a problem. It has a modest cost of increased RAM usage.

If one has a relatively small data set (and/or a computer with a lot of RAM),
then one can pre-read all particles into RAM at the beginning of a cal-
culation. This will greatly speed up calculations on systems with relatively
slow disk access. However, one should of course be careful with the amount
of RAM available. Because particles are read in float-precision, it will take
N ﬁ%ﬁii%;iiﬁ%;j“ Giga-bytes to read N particles into RAM. For 100,000 par-
ticles with a 200-pixel boxsize that becomes 15Gb, or 60 Gb for the same number

of particles in a 400-pixel boxsize.

If the data set is too large to pre-read into RAM, but each computing node has a
local, fast disk (e.g. a solid-state drive) mounted with the same name, then one
can let each MPI slave copy all particles onto the local disk prior to starting the
calculations. This is done using the Copy particles to scratch directory.
If multiple slaves will be executed on the same node, only the first slave will
copy the particles. If the local disk is too small to hold the entire data set, those
particles that no loner fit on the scratch disk will be read from their original
position. A sub-directory called relion_volatile will be created inside the
specified directory name. For example, if one specifies /ssd, then a directory
called /ssd/relion_volatile will be created. If the /ssd/relion_volatile
directory already exists, it will be wiped before copying the particles. Then,
the program will copy all input particles into a single large stack inside this
directory. If the job finishes correctly, the /ssd/relion_volatile directory will
be deleted again. If the job crashes before finishing, you may want to remove
it yourself. The program will create the /ssd/relion_volatile directory with
writing permissions for everyone. Thereby, one can choose to use /ssd, i.e.
without a username, as a scratch directory. That way, provided always only a
single job is executed by a single user on each computing node, the local disks
do not run the risk of filling up with junk when jobs crash and users forget to
clean the scratch disk themselves.

o4

Finally, there is an option to combine iterations through disc. If set to
Yes, at the end of every iteration all MPI slaves will write out a large file with
their accumulated results. The MPI master will read in all these files, combine
them all, and write out a new file with the combined results. All MPI salves
will then read in the combined results. This reduces heavy load on the network,
but increases load on the disc I/O. This will affect the time it takes between
the progress-bar in the expectation step reaching its end (the mouse gets to the
cheese) and the start of the ensuing maximisation step. It will depend on your
system setup which is most efficient. This option was originally implemented to
circumvent bugs on the network cards on our old cluster at LMB. Nowadays,
we prefer not to use this option, as it tends to be very slow when refinements
reached high resolutions.

13.3 Scheduling jobs

The [Séhedule] button can be used to prepare jobs for future execution. Because
expected output files of scheduled jobs are already available for input into other
jobs from their Browse buttons, it is possible to build a “pipeline” of multiple,

consecutive jobs in the |Scheduled jobs| list. One can execute the scheduled

jobs using the Autorun menu on the top left of the GUI. The program will
ask you how many times you want to run the scheduled jobs. Providing a
value larger than one, will result in an iterative execution of all the scheduled
jobs. If you choose to do this, there will be another question of how many
minutes should at least pass between each repetition of all scheduled jobs. (If
the execution of all scheduled jobs takes less than this time, the program will
wait with executing the next round of scheduled jobs.) The following jobtypes
will only process micrographs that were not finished yet in a previous iteration:
Import|, [Motion correction], [CTF estimation], [Auto-picking|, [Particle extraction|
and [Movie refinement]. All other jobtypes will restart their calculation from
scratch again after each iteration of executing the scheduled jobs.

13.4 On-the-fly processing

A new feature introduced to RELION-3.0 is the availability of adding scheduled
jobs to the pipeline and executing them from the command-line. This has
allowed the development of a script, written in python, called relion_it.py,
which can be found in the scripts/ directory of the RELION installation. This
script automatically executes the following procedure:

° of all x.mrcs or *.mrc or *.tiff files, which can be either movies
or averaged micrographs (*.mrc only). Because copying large files may
take some time, and you do not want to import micrographs/movies that
have not yet finished copying, one could make a script that copies the
files into the project directory, or makes symbolic links, with a temporary

99

filename. Only once they have arrived entirely could the file then be
renamed to their final filename.

e If the imported files were movies: [Motion correction|

e |CTF estimation

° with a new feature in RELION-3.0: reference-free picking
based on a Laplacian-of-Gaussian (LoG) filter

° l Particle extraction ‘

This procedure is repeated many times, and during each repeat only newly
added images will be processed. Meanwhile, the script also monitors how many
particles have been extracted. If a user-specified number of particles has been
extracted, the script will also launch and/or
jobs, in batches of a user-specified number of particles. When no 3D refer-
ence is available yet, the script can also generate automatically one using a

3D initial model| job.

Optionally, the script can perform a second pass through all micrographs. Once
a suitable 3D reference has been obtained from the first batch of particles,
this is used to generate projections for a template-based job. The
extracted particles from this picking run, possibly with a larger box size than the

one used in the first pass, can then again be used for subsequent | 2D classification
and/or |3D classification| jobs.

The entire setup allows convenient on-the-fly processing of images, as they are
being collected, and the process can be followed live by opening the GUI in the
project directory. Inspecting 2D class averages already during data collection
at the microscope may be useful in order to decide whether the data is worth
acquiring in the first place, or whether the orientational distribution is OK or
one perhaps needs to collect in regions on the grid with thicker ice. On-the-fly
3D reconstructions may be useful, for example, to confirm whether a certain
cofactor is bound to a complex of interest.

Being written in python, it is relatively easy to modify the script, and we en-
vision that this script may be modifed in many different ways to reflect the
needs and setups of many users. One could for example quite easily add a

job to assess the achievable resolution of the data set that is

being acquired.

13.5 Helical reconstruction

Shaoda He, a PhD-student in the Scheres group, has implemented a work-
flow for the processing of helical assemblies. This involves additional tabs to
the parameter-panels of the [Auto-picking], [Particle extraction|, [2D classification],
[3D classification], [3D auto-refine], ’Particle polishing‘ and |Mask create| job-types.

96

We do not have a separate tutorial for processing helical assemblies. The gen-
eral principles remain the same as for single-particle analysis, which is covered in
this tutorial. Therefore, users intending to use RELION for helical processing are
still encouraged to do this tutorial first. For a detailed description of the helical
options, the user is referred to the corresponding pages on the RELION Wiki, or
to Shaoda’s paper|[5].

13.6 Sub-tomogram averaging

For sub-tomogram averaging, which was implemented with help from Tanmay
Bharat, a former postdoc in the Lowe group at MRC-LMB, the same holds as for
helical processing. Many general concepts remain the same as for single-particle
analysis, and users intending to perform sub-tomogram averaging in RELION are
encouraged to go through this tutorial first. For a detailed description of the
sub-tomogram averaging procedures, the user is referred to the corresponding
pages on the RELION Wiki, or to Tanmay’s paper[l]. Please note that we are
still actively working on making the sub-tomogram averaging pipeline more
convenient to use and better. This work is done in close collaboration with the
group of John Briggs, also at MRC-LMB. Meanwhile, please be advised that
the sub-tomogram averaging pipeline is considerably less stream-lined than the
single-particle one, and users should be prepared to do some scripting outside
the RELION pipeline for many cases.

13.7 Interaction with other programs

Although, in principle, RELION can use particles that have been extracted by a
different program, this is NOT the recommended procedure. Many programs
change the particles themselves, e.g. through phase flipping, band-pass or
Wiener filtering, masking etc. All these are sub-optimal for subsequent use
in RELION. Moreover, gathering all the required metadata into a correctly for-
matted RELION-type STAR file may be prone to errors. Because re-extracting
your particles in RELION is straightforward and very fast, the procedure outlined
below is often a much easier (and better) route into RELION.

Also, several implementations of wrappers around RELION have now been re-
ported (e.g. in EMAN2, SCIPION and APPION). Although we try to be helpful
when others write these wrappers, we have absolutely no control over them and
do not know whether their final product uses RELION in the best way. Therefore,
in case of any doubt regarding results obtained with these wrappers, we would
recommend following the procedures outlined in this tutorial.

o7

http://www2.mrc-lmb.cam.ac.uk/relion/index.php/Helical_processing
https://doi.org/10.1016/j.jsb.2017.02.003
http://www2.mrc-lmb.cam.ac.uk/relion/index.php/Sub-tomogram_averaging
http://dx.doi.org/10.1016/j.str.2015.06.026

References

[1]

Tanmay A. M. Bharat, Christopher J. Russo, Jan Lwe, Lori A. Passmore,
and Sjors H. W. Scheres. Advances in Single-Particle Electron Cryomi-
croscopy Structure Determination applied to Sub-tomogram Averaging.
Structure (London, England: 1993), 23(9):1743-1753, September 2015.

Shaoxia Chen, Greg McMullan, Abdul R. Faruqi, Garib N. Murshudov,
Judith M. Short, Sjors H. W. Scheres, and Richard Henderson. High-
resolution noise substitution to measure overfitting and validate resolution
in 3d structure determination by single particle electron cryomicroscopy.
Ultramicroscopy, 135:24-35, December 2013.

Rafael Fernandez-Leiro and Sjors H. W. Scheres. A pipeline approach to
single-particle processing in RELION. Acta Crystallographica. Section D,
Structural Biology, T3(Pt 6):496-502, June 2017.

Timothy Grant and Nikolaus Grigorieff. Measuring the optimal exposure
for single particle cryo-EM using a 2.6 reconstruction of rotavirus VP6.
eLife, 4:e06980, 2015.

Shaoda He and Sjors H. W. Scheres. Helical reconstruction in RELION.
Journal of Structural Biology, in press, 2017.

Dari Kimanius, Bjrn O Forsberg, Sjors HW Scheres, and Erik Lindahl. Ac-
celerated cryo-EM structure determination with parallelisation using GPUs
in RELION-2. eLife, 5, November 2016.

Alp Kucukelbir, Fred J Sigworth, and Hemant D Tagare. Quantifying the
local resolution of cryo-EM density maps. Nature methods, 11(1):63-65,
January 2014.

Ali Punjani, John L. Rubinstein, David J. Fleet, and Marcus A. Brubaker.
cryoSPARC: algorithms for rapid unsupervised cryo-EM structure deter-
mination. Nature Methods, 14(3):290-296, March 2017.

Alexis Rohou and Nikolaus Grigorieff. CTFFIND4: Fast and accurate de-
focus estimation from electron micrographs. Journal of Structural Biology,
192(2):216-221, November 2015.

Peter B Rosenthal and Richard Henderson. Optimal determination of parti-
cle orientation, absolute hand, and contrast loss in single-particle electron
cryomicroscopy. Journal of Molecular Biology, 333(4):721-745, October
2003.

S. H. W. Scheres. Processing of Structurally Heterogeneous Cryo-EM Data
in RELION. Methods in Enzymology, 579:125-157, 2016.

Sjors H W Scheres. Classification of Structural Heterogeneity by Maximum-
Likelihood Methods. In Cryo-EM, Part B: 3-D Reconstruction, volume 482
of Methods in Enzymology, pages 295-320. Academic Press, 2010.

98

[13]

[14]

[15]

[16]

[17]

Sjors H W Scheres. A Bayesian view on cryo-EM structure determination.
Journal of Molecular Biology, 415(2):406-418, January 2012.

Sjors H W Scheres. RELION: Implementation of a Bayesian approach
to cryo-EM structure determination. Journal of Structural Biology,
180(3):519-530, December 2012.

Sjors H W Scheres and Shaoxia Chen. Prevention of overfitting in cryo-EM
structure determination. Nature methods, 9(9):853-854, September 2012.

Sjors H W Scheres, R. Nunez-Ramirez, C. O. S Sorzano, J. M Carazo,
and R. Marabini. Image processing for electron microscopy single-particle
analysis using XMIPP. Nature Protocols, 3(6):977-90, 2008.

J M Smith. Ximdisp—A visualization tool to aid structure determination
from electron microscope images. Journal of structural biology, 125(2-
3):223-228, May 1999.

Guang Tang, Liwei Peng, Philip R Baldwin, Deepinder S Mann, Wen Jiang,
Tan Rees, and Steven J Ludtke. EMAN2: an extensible image processing
suite for electron microscopy. Journal of Structural Biology, 157(1):38-46,
January 2007.

Kutti R Vinothkumar, Greg McMullan, and Richard Henderson. Molecular
Mechanism of Antibody-Mediated Activation of -galactosidase. Structure
(London, England: 1993), 22(4):621-627, April 2014.

Kai Zhang. Gectf: Real-time CTF determination and correction. Journal
of Structural Biology, 193(1):1-12, January 2016.

Shawn Q. Zheng, Eugene Palovcak, Jean-Paul Armache, Kliment A. Verba,
Yifan Cheng, and David A. Agard. MotionCor2: anisotropic correction
of beam-induced motion for improved cryo-electron microscopy. Nature
Methods, 14(4):331-332, April 2017.

99

	Preprocessing
	Getting organised
	Beam-induced motion correction
	CTF estimation
	Manual particle picking
	LoG-based auto-picking
	Particle extraction
	Making templates for auto-picking
	Selecting templates for auto-picking
	Auto-picking
	The shrink parameter

	Particle sorting

	Reference-free 2D class averaging
	Running the job
	Analysing the results in more detail
	Making groups

	De novo 3D model generation
	Running the job
	Analysing the results

	Unsupervised 3D classification
	Running the job
	Analysing the results in more detail

	High-resolution 3D refinement
	Running the auto-refine job
	Analysing the results

	Mask creation & Postprocessing
	Making a mask
	Postprocessing

	CTF and beamtilt refinement
	Running the job
	Analysing the results

	Bayesian polishing
	Running in training mode
	Running in polishing mode
	Analysing the results
	When and how to run CTF refinement and Bayesian polishing

	Local-resolution estimation
	Running the job
	Analysing the results

	Checking the handedness
	Wrapping up
	Making a flowchart
	Cleaning up your directories
	Asking questions and citing us
	Further reading

	Appendix A: notes on installation
	Install MPI
	Install CUDA
	Install RELION
	Install motion-correction software
	Install CTF-estimation software
	Install RESMAP

	Appendix B: using RELION
	The GUI
	A pipeline approach
	The upper half: jobtype-browser and parameter-panel
	The lower half: job-lists and stdout/stderr windows
	The Display button
	The Job actions button
	Clean-up to save disk space

	Optimise computations for your setup
	GPU-acceleration
	Disk access

	Scheduling jobs
	On-the-fly processing
	Helical reconstruction
	Sub-tomogram averaging
	Interaction with other programs

